LOCAL DIFFERENCE THRESHOLD LEARNING IN FILTERING NORMAL WHITE NOISE

Leonid Timchenko

tumchenko_li@gsuite.duit.edu.ua
State University of Infrastructure and Technology, Kyiv, Ukraine (Ukraine)
http://orcid.org/0000-0001-5056-5913

Natalia Kokriatskaia


State University of Infrastructure and Technology, Kyiv, Ukraine (Ukraine)
http://orcid.org/0000-0003-0090-3886

Volodymyr Tverdomed


State University of Infrastructure and Technology, Kyiv, Ukraine (Ukraine)
http://orcid.org/0000-0002-0695-1304

Natalia Kalashnik


National Pirogov Memorial Medical University, Vinnytsia, Ukraine (Ukraine)
http://orcid.org/0000-0001-5312-3280

Iryna Shvarts


Vinnytsia National Technical University, Vinnytsia, Ukraine (Ukraine)
http://orcid.org/0000-0003-4344-5213

Vladyslav Plisenko


State University of Infrastructure and Technology, Kyiv, Ukraine (Ukraine)
http://orcid.org/0000-0002-5970-2408

Dmytro Zhuk


State University of Infrastructure and Technology, Kyiv, Ukraine (Ukraine)
http://orcid.org/0000-0001-8951-5542

Saule Kumargazhanova


D.Serikbayev East Kazakhstan State Technical University, Ust-Kamenogorsk, Kazakhstan (Kazakhstan)
http://orcid.org/0000-0002-6744-4023

Abstract

The article was aimed at studying the process of learning by the local difference threshold when filtering normal white noise. The existing learning algorithms for image processing were analyzed and their advantages and disadvantages were identified. The influence of normal white noise on the recognition process is considered. A method for organizing the learning process of the correlator with image preprocessing by the GQP method has been developed. The dependence of the average value of readings of the rank CCF (RCCF) of GQPs of the reference and current images, representing realizations of normal white noise, on the probability of formation of readings of zero GQP is determined. Two versions of the learning algorithm according to the described learning method are proposed. A technique for determining the algorithm efficiency estimate is proposed.


Keywords:

training, local difference threshold, filtering normal white noise

Bochkarev A. M.: Correlation-Navigation Navigation Systems. Foreign radio electronics 9, 1981, 12–16.
  Google Scholar

Dougherty E. R.: Digital Image Processing Methods. CRC Press, Boca Raton 2020) [http://doi.org/10.1201/9781003067054].
DOI: https://doi.org/10.1201/9781003067054   Google Scholar

Gan Woon Siong: Signal Processing and Image Processing for Acoustical Imaging. Springer Singapore, 2020 [http://doi.org/10.1007/978-981-10-5550-8].
DOI: https://doi.org/10.1007/978-981-10-5550-8   Google Scholar

Kondratiuk S., Kruchynin K., Krak I., Kruchinin S.: Information technology for security system based on cross platform software, NATO Science for Peace and Security Series A: Chemistry and Biology, 2018, 331–339.
DOI: https://doi.org/10.1007/978-94-024-1304-5_25   Google Scholar

Kondratiuk S., Krak I.: Dactyl Alphabet Modeling and Recognition Using Cross Platform Software. Proceedings of the 2018 IEEE 2nd International Conference on Data Stream Mining and Processing, 8478417, 2018, 420–423.
DOI: https://doi.org/10.1109/DSMP.2018.8478417   Google Scholar

Kozlovska T., Pavlov S.: Optoelectronic Means of Diagnosing Human Pathologies Associated with Peripheral Blood Circulation. Academic Publishing, Beau Bassin 71504, Mauritius 2019.
  Google Scholar

Krak I. V., Kryvonos I. G., Kulias A. I.: Applied aspects of the synthesis and analysis of voice information. Cybernetics and Systems Analysis 49(4), 2013, 89–596.
DOI: https://doi.org/10.1007/s10559-013-9545-9   Google Scholar

Kutaev Y. F.: Systemic correlation-extreme measurement of coordinates with generalized Q-preparation of images: Ph.D. thessis. Vinnitsa, 1989.
  Google Scholar

Pogrebnoy V. A.: Airborne signal processing systems. Scientific thought, Kiev 1984.
  Google Scholar

Pratt W.: Digital image processing. In 2 books. John Wiley & Sons, Inc., 1982.
  Google Scholar

Sacerdoti F. M.: Digital Image Processing. In: Sacerdoti, F., Giordano, A., Cavaliere, C. (eds): Advanced Imaging Techniques in Clinical Pathology. Current Clinical Pathology. Humana Press, New York 2016 [http://doi.org/10.1007/978-1-4939-3469-0_2].
DOI: https://doi.org/10.1007/978-1-4939-3469-0   Google Scholar

Timchenko L. I., Kokriatskaia N. I., Nakonechna S., Poplavskaia A. A., Stepaniuk D. S., Gromaszek K. and Rakhmetullina S.: Analysis of computational processes of pyramidal and parallel-hierarchical processing of information, Proc. SPIE 10808, 2018, 1080822.
  Google Scholar

Timchenko L. I., Kutaev Y. F., Chepornyuk S. V., Grudin M. A., Harvey D. M., Gertsiy A. A.: A Brain Like Approach to Multistage Hierarchial Image, Lecture Notes in Computer Sciense. Image Analysis and Processing 1311, 1997, 246–253.
DOI: https://doi.org/10.1007/3-540-63508-4_129   Google Scholar

Trishch R., Nechuiviter O., Vasilevskyi O., Dyadyura K., Tsykhanovska I., Yakovlev M.: Qualimetric method of assessing risks of low quality products, MM Science Journal 4, 2021, 4769–4774.
DOI: https://doi.org/10.17973/MMSJ.2021_10_2021030   Google Scholar

Tulbure A., Tulbure A.: The use of image recognition systems in manufacturing processes. IEEE International Conference on Automation, Quality and Testing, Robotics 2018.
  Google Scholar

Wójcik W., Pavlov S., Kalimoldayev M.: Information Technology in Medical Diagnostics II. Taylor & Francis Group, CRC Press, Balkema book, London 2019.
DOI: https://doi.org/10.1201/9780429057618   Google Scholar

Download


Published
2023-06-30

Cited by

Timchenko, L., Kokriatskaia, N., Tverdomed, V., Kalashnik, N., Shvarts, I., Plisenko, V., … Kumargazhanova, S. (2023). LOCAL DIFFERENCE THRESHOLD LEARNING IN FILTERING NORMAL WHITE NOISE. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 13(2), 69–73. https://doi.org/10.35784/iapgos.3664

Authors

Leonid Timchenko 
tumchenko_li@gsuite.duit.edu.ua
State University of Infrastructure and Technology, Kyiv, Ukraine Ukraine
http://orcid.org/0000-0001-5056-5913

Authors

Natalia Kokriatskaia 

State University of Infrastructure and Technology, Kyiv, Ukraine Ukraine
http://orcid.org/0000-0003-0090-3886

Authors

Volodymyr Tverdomed 

State University of Infrastructure and Technology, Kyiv, Ukraine Ukraine
http://orcid.org/0000-0002-0695-1304

Authors

Natalia Kalashnik 

National Pirogov Memorial Medical University, Vinnytsia, Ukraine Ukraine
http://orcid.org/0000-0001-5312-3280

Authors

Iryna Shvarts 

Vinnytsia National Technical University, Vinnytsia, Ukraine Ukraine
http://orcid.org/0000-0003-4344-5213

Authors

Vladyslav Plisenko 

State University of Infrastructure and Technology, Kyiv, Ukraine Ukraine
http://orcid.org/0000-0002-5970-2408

Authors

Dmytro Zhuk 

State University of Infrastructure and Technology, Kyiv, Ukraine Ukraine
http://orcid.org/0000-0001-8951-5542

Authors

Saule Kumargazhanova 

D.Serikbayev East Kazakhstan State Technical University, Ust-Kamenogorsk, Kazakhstan Kazakhstan
http://orcid.org/0000-0002-6744-4023

Statistics

Abstract views: 213
PDF downloads: 184


Most read articles by the same author(s)

1 2 > >>