BUDOWA TOMOGRAFU ULTRADŹWIĘKOWEGO DO ANALIZY PROCESÓW TECHNOLOGICZNYCH W ZAKRESIE FAL ODBITYCH I TRANSMISYJNYCH

Tomasz Rymarczyk

tomasz@rymarczyk.com
1. Centrum Badawczo-Rozwojowe Netrix SA; 2. Wyższa Szkoła Ekonomii i Innowacji w Lublinie (Polska)
https://orcid.org/0000-0002-3524-9151

Michał Gołąbek


Centrum Badawczo-Rozwojowe Netrix SA (Polska)
https://orcid.org/0000-0002-2696-505X

Piotr Lesiak


Wyższa Szkoła Ekonomii i Innowacji w Lublinie (Polska)
https://orcid.org/0000-0002-9792-3463

Andrzej Marciniak


Wyższa Szkoła Ekonomii i Innowacji w Lublinie (Polska)
https://orcid.org/0000-0002-2718-4802

Mirosław Guzik


Wyższa Szkoła Ekonomii i Innowacji w Lublinie (Polska)
https://orcid.org/0000-0003-3351-9039

Abstrakt

W niniejszym artykule przedstawiono konstrukcję tomografu ultradźwiękowego do analizy procesów technologicznych w zakresie fal odbitych i transmisyjnych. Tomografia ultradźwiękowa umożliwia analizowanie procesów zachodzących w badanym obiekcie bez ingerencji w jego wnętrze poprzez odpowiednią akwizycję i analizę danych. Celem konstrukcyjnym jest weryfikacja powtarzalności wyników badań pomiarowych poprzez wyeliminowanie sprzętu laboratoryjnego. Tomograf ultradźwiękowy został zaprojektowany w sposób modułowy i składa się z płyty głównej połączonej z płytą kondycjonowania sygnału analogowego,  wyświetlacza ciekłokrystalicznego ze zintegrowanym procesorem graficznym oraz impulsatora wysokiego napięcia wraz z 64 kanałowym multiplekserem. Urządzenie zostało zaprojektowane do tomograficznych pomiarów właściwości procesów technologicznych.


Słowa kluczowe:

tomografia ultradźwiękowa, sensory, pomiary

Babout L., Grudzień K., Wiącek J., Niedostatkiewicz M., Karpiński B., Szkodo M.: Selection of material for X-ray tomography analysis and DEM simulations: comparison between granular materials of biological and non-biological origins. Granul. Matter 20(3)/2018, 38.
DOI: https://doi.org/10.1007/s10035-018-0809-y   Google Scholar

Chaniecki Z., Romanowski A., Nowakowski J., Niedostatkiewicz M.: Application of twin-plane ECT sensor for identification of the internal imperfections inside concrete beams Grudzien. IEEE Instrumentation and Measurement Technology Conference 2016, 7520512.
  Google Scholar

Duda K., Adamkiewicz P., Rymarczyk T., Niderla K.: Nondestructive Method to Examine Brick Wall Dampness. International Interdisciplinary PhD Workshop, Brno, 2016, 68–71.
  Google Scholar

Fiala P., Drexler P., Nešpor D., Szabó Z., Mikulka J., Polívka J.: The Evaluation of Noise Spectroscopy Tests. Entropy 18(12)/2016, 1–16.
DOI: https://doi.org/10.3390/e18120443   Google Scholar

Gudra T., Opieliński K. J.: The multi–element probes for ultrasound transmission tomography. Journal de Physique 4(137)/2006, 79–86.
DOI: https://doi.org/10.1051/jp4:2006137015   Google Scholar

Golabek M., Rymarczyk T., Adamkiewicz P.: Construction of ultrasonic reflection tomograph for analysis of technological processes, Applications of Electromagnetics in Modern Engineering and Medicine. XXIX Sympozjum PTZE 2019, 47–51.
DOI: https://doi.org/10.23919/PTZE.2019.8781705   Google Scholar

Herman G.T.: Image Reconstruction from Projections: The Fundamentals of Computerized Tomography. Academic Press, New York 1980.
  Google Scholar

Jiang Y., Soleimani M., Wang B.: Contactless electrical impedance and ultrasonic tomography, correlation, comparison and complementary study. Measurement Science and Technology 30/2019, 114001.
DOI: https://doi.org/10.1088/1361-6501/ab2292   Google Scholar

Kaczmarz S.: Angenäherte Auflösung von Systemen Linearer Gleichungen. Bull. Acad. Polon. Sci. Lett. A, 6–8A/1937, 355–357.
  Google Scholar

Kak A. C., Slaney M.: Principles of Computerized Tomographic Imaging. IEEE Press, New York 1999.
  Google Scholar

Kryszyn J., Wanta D. M., Smolik W. T.: Gain Adjustment for Signal-to-Noise Ratio Improvement in Electrical Capacitance Tomography System EVT4. IEEE Sens. J. 17(24)/2017, 8107–8116.
DOI: https://doi.org/10.1109/JSEN.2017.2744985   Google Scholar

Kryszyn J., Smolik W.: Toolbox for 3d modelling and image reconstruction in electrical capacitance tomography. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska – IAPGOŚ 7(1)/2017, 137–145.
  Google Scholar

Lopato P., Chady T., Sikora R., Ziolkowski M.: Full wave numerical modelling of terahertz systems for nondestructive evaluation of dielectric structures. COMPEL – The international journal for computation and mathematics in electrical and electronic engineering 32(3)/2013, 736–749.
DOI: https://doi.org/10.1108/03321641311305719   Google Scholar

Majchrowicz M., Kapusta P., Jackowska-Strumiłło L., Sankowski D.: Optimization of Distributed Multi-node, Multi-GPU, Heterogeneous System for 3D Image Reconstruction in Electrical Capacitance Tomography. Image processing & communications 21(3)/2016, 81–90.
DOI: https://doi.org/10.1515/ipc-2016-0018   Google Scholar

Nowakowski J., Ostalczyk, P., Sankowski D.: Application of fractional calculus for modelling of two-phase gas/liquid flow system. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska – IAPGOŚ 7(1)/2017, 42–45.
DOI: https://doi.org/10.5604/01.3001.0010.4580   Google Scholar

Polakowski K., Sikora J.: Podstawy matematyczne obrazowania ultradźwiękowego. Politechnika Lubelska, Lublin 2016.
  Google Scholar

Romanowski A., Łuczak P., Grudzień K.: X-ray Imaging Analysis of Silo Flow Parameters Based on Trace Particles Using Targeted Crowdsourcing. Sensors 19(15)/2019, 3317.
DOI: https://doi.org/10.3390/s19153317   Google Scholar

Rymarczyk T., Kłosowski G.: Innovative methods of neural reconstruction for tomographic images in maintenance of tank industrial reactors. Eksploatacja i Niezawodność – Maintenance and Reliability 21(2)/2019, 261–267.
DOI: https://doi.org/10.17531/ein.2019.2.10   Google Scholar

Rymarczyk T., Filipowicz S. F., Sikora J.: Level Set Method for Inverse Problem Solution In Electrical Impedance Tomography. Journal Proceedings of the XII International Conference on Electrical Bioimpedance & V Electrical Impedance Tomography, 2004, 519–522.
  Google Scholar

Rymarczyk T., Kozłowski E., Kłosowski G., Niderla K.: Logistic Regression for Machine Learning in Process Tomography. Sensors 19/2019, 3400.
DOI: https://doi.org/10.3390/s19153400   Google Scholar

Rymarczyk T., Szumowski K., Adamkiewicz P., Tchórzewski P., Sikora J.: Moisture Wall Inspection Using Electrical Tomography Measurements. Przegląd Elektrotechniczny 94/2018, 97–100.
  Google Scholar

Rymarczyk T., Nita P., Vejar A., Stefaniak B., Sikora J.: Electrical tomography system for Innovative Imaging and Signal Analysis. Przegląd Elektrotechniczny 95(6)/2019, 133–136.
DOI: https://doi.org/10.15199/48.2019.06.24   Google Scholar

Soleimani M., Mitchell C. N., Banasiak R., Wajman R., Adler A.: Four-dimensional electrical capacitance tomography imaging using experimental data. Progress in Electromagnetics Research 90/2009, 171–186.
DOI: https://doi.org/10.2528/PIER09010202   Google Scholar

Szczęsny A., Korzeniewska E.: Selection of the method for the earthing resistance measurement. Przegląd Elektrotechniczny 94(12)/2018, 178–181.
  Google Scholar

Vališ D., Hasilová K., Forbelská M., Vintr Z.: Reliability modelling and analysis of water distribution network based on backpropagation recursive processes with real field data. Measurement 149/2020, 107026
DOI: https://doi.org/10.1016/j.measurement.2019.107026   Google Scholar

Wajman R., Fiderek P., Fidos H., Sankowski D., Banasiak R.: Metrological evaluation of a 3D electrical capacitance tomography measurement system for two-phase flow fraction determination. Measurement Science and Technology 24(6)/2013, 065302.
DOI: https://doi.org/10.1088/0957-0233/24/6/065302   Google Scholar

Wang M.: Industrial Tomography: Systems and Applications. Elsevier 2015.
  Google Scholar

Ye Z., Banasiak R., Soleimani M.: Planar array 3D electrical capacitance tomography. Insight: Non-Destructive Testing and Condition Monitoring 55(12)/2013, 675–680.
DOI: https://doi.org/10.1784/insi.2012.55.12.675   Google Scholar

Ziolkowski M., Gratkowski S., Zywica A. R.: Analytical and numerical models of the magnetoacoustic tomography with magnetic induction. COMPEL – The international journal for computation and mathematics in electrical and electronic engineering 37(2)/2018, 538–548.
DOI: https://doi.org/10.1108/COMPEL-12-2016-0530   Google Scholar


Opublikowane
2019-12-15

Cited By / Share

Rymarczyk, T., Gołąbek, M., Lesiak, P., Marciniak, A., & Guzik, M. (2019). BUDOWA TOMOGRAFU ULTRADŹWIĘKOWEGO DO ANALIZY PROCESÓW TECHNOLOGICZNYCH W ZAKRESIE FAL ODBITYCH I TRANSMISYJNYCH. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 9(4), 43–47. https://doi.org/10.35784/iapgos.569

Autorzy

Tomasz Rymarczyk 
tomasz@rymarczyk.com
1. Centrum Badawczo-Rozwojowe Netrix SA; 2. Wyższa Szkoła Ekonomii i Innowacji w Lublinie Polska
https://orcid.org/0000-0002-3524-9151

Autorzy

Michał Gołąbek 

Centrum Badawczo-Rozwojowe Netrix SA Polska
https://orcid.org/0000-0002-2696-505X

Autorzy

Piotr Lesiak 

Wyższa Szkoła Ekonomii i Innowacji w Lublinie Polska
https://orcid.org/0000-0002-9792-3463

Autorzy

Andrzej Marciniak 

Wyższa Szkoła Ekonomii i Innowacji w Lublinie Polska
https://orcid.org/0000-0002-2718-4802

Autorzy

Mirosław Guzik 

Wyższa Szkoła Ekonomii i Innowacji w Lublinie Polska
https://orcid.org/0000-0003-3351-9039

Statystyki

Abstract views: 468
PDF downloads: 212


Inne teksty tego samego autora

<< < 1 2 3 4 > >>