VIRTUAL REALITY IN PRODUCTION LAYOUT DESIGNING
Dariusz Plinta
dplinta@ath.bielsko.plUniversity of Bielsko-Biała, Faculty of Mechanical Engineering and Computer Sciences, Production Engineering Department (Poland)
Karolina Kłaptocz
University of Bielsko-Biała, Faculty of Mechanical Engineering and Computer Sciences, Production Engineering Department (Poland)
Abstract
Information technologies allow for improving production systems functioning especially thanks to a possibility of solving complex production problems in a very short time. The production system designing is increasingly based on virtual reality, and more specifically on the concept of a digital factory. It enables to create virtual models of real objects and use them for visualization of products and manufacturing processes. The presented examples of new information technologies, which are used in production practice, are the main object of this paper.
Keywords:
virtual reality, laser scanningReferences
Bučková, M., Krajčovič, M., & Edl, M. (2017). Computer simulation and optimization of transport distances of order picking processes. Procedia Engineering, 192, 69–74.
DOI: https://doi.org/10.1016/j.proeng.2017.06.012
Google Scholar
Danilczuk, W., & Gola, A. (2020). Computer-Aided Material Demand Planning Using ERP Systems And Business Intelligence Technology. Applied Computer Science, 16(3), 42–55. http://doi.org/10.23743/acs-2020-20
Google Scholar
Davis, J., Edgar, T., Porter, J., Bernaden, J., & Sarli, M. (2012). Smart manufacturing, manufacturing intelligence and demand-dynamic performance. Computers & Chemical Engineering, 47, 145–156. https://doi.org/10.1016/j.compchemeng.2012.06.037
DOI: https://doi.org/10.1016/j.compchemeng.2012.06.037
Google Scholar
Dulina, Ľ., & Bartanusova, M. (2014). CAVE design using in digital factory. Procedia Engineering, 100, 291–298. https://doi.org/10.1016/j.proeng.2015.01.370
DOI: https://doi.org/10.1016/j.proeng.2015.01.370
Google Scholar
Furmann, R., & Krajčovič, M. (2011). Modern approach of 3D layout design. In: TRANSCOM 2011: 9-th European conference of young research and scientific workers (pp. 43–46). University of Zilina.
Google Scholar
Furmann, R., Furmannová, B., & Więcek, D. (2017). Interactive Design of Reconfigurable Logistics Systems. Procedia Engineering, 192, 207–212. https://doi.org/10.1016/j.proeng.2017.06.036
DOI: https://doi.org/10.1016/j.proeng.2017.06.036
Google Scholar
Gola, A. (2014). Economic Aspects of Manufacturing Systems Design. Actual Problems of Economics, 156(6), 205–212.
Google Scholar
Grabowski, A. (2012). Wykorzystanie współczesnych technik rzeczywistości wirtualnej i rozszerzonej do szkolenia
Google Scholar
pracowników. Bezpieczeństwo pracy: nauka i praktyka, 4, 18–21.
Google Scholar
Gregor, M., Herčko, J., & Grznár, P. (2015). The Factory of the Future Production System Research. In ICAC 2015: proceedings of the 21st International conference on automation and computing (pp. 101–105). Glasgow, UK.
DOI: https://doi.org/10.1109/IConAC.2015.7313998
Google Scholar
Gregor, M., Medvecký, Š., Mičieta, B., Matuszek, J., & Hrčeková, A. (2007). Digital Factory. KRUPA print.
Google Scholar
Kolberg, D., & Zühlke, D. (2015). Lean Automation enabled by Industry 4.0 Technologies. IFAC-PapersOnLine, 48-3, 1870–1875.
DOI: https://doi.org/10.1016/j.ifacol.2015.06.359
Google Scholar
Krajčovič M., Bulej, V., Kuric, I., & Sapietova, A. (2013). Intelligent manufacturing systems in concept of digital factory. Communications, 15(2), 77–87.
DOI: https://doi.org/10.26552/com.C.2013.2.77-87
Google Scholar
Plinta, D., & Więcek, D. (2012). Production systems design. Wydawnictwo Naukowe Akademii Techniczno-Humanistycznej.
Google Scholar
Skokan, R. (2019). Design of manufacturing systems using the concept of digital twin. In Advanced Industrial engineering. Wydawnictwo Fundacji Centrum Nowych Technologii.
Google Scholar
Tatarchenko, Y., Lyfar, V., & Tatarchenko, H. (2020). Information model of system of support of decision making during management of it companies. Applied Computer Science, 16(1), 85–94. https://doi.org/10.23743/acs-2020-07
Google Scholar
Westkaemper, E., Bischoff, J., Von Biel, R., & Duerr, M. (2001). Factory Digitalizing –An adapted approach to a digital factory planning in existing factories and buildings. Werkstattstechnik, 91/2001.
Google Scholar
Authors
Dariusz Plintadplinta@ath.bielsko.pl
University of Bielsko-Biała, Faculty of Mechanical Engineering and Computer Sciences, Production Engineering Department Poland
Authors
Karolina KłaptoczUniversity of Bielsko-Biała, Faculty of Mechanical Engineering and Computer Sciences, Production Engineering Department Poland
Statistics
Abstract views: 77PDF downloads: 49
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
Most read articles by the same author(s)
- Dariusz Plinta, Katarzyna Radwan, IMPROVING MATERIAL FLOW IN A MODIFIED PRODUCTION SYSTEM , Applied Computer Science: Vol. 19 No. 1 (2023)
- Dariusz PLINTA, Martin KRAJČOVIČ, APPLICATION OF THE AUGMENTED REALITY IN PRODUCTION PRACTICE , Applied Computer Science: Vol. 13 No. 2 (2017)
Similar Articles
- Dariusz PLINTA, Martin KRAJČOVIČ, APPLICATION OF THE AUGMENTED REALITY IN PRODUCTION PRACTICE , Applied Computer Science: Vol. 13 No. 2 (2017)
- Jakub ANCZARSKI, Adrian BOCHEN, MArcin GŁĄB, Mikolaj JACHOWICZ, Jacek CABAN, Radosław CECHOWICZ, A METHOD OF VERIFYING THE ROBOT'S TRAJECTORY FOR GOALS WITH A SHARED WORKSPACE , Applied Computer Science: Vol. 18 No. 1 (2022)
- Andrij MILENIN, PARALLEL SOLUTION OF THERMOMECHANICAL INVERSE PROBLEMS FOR LASER DIELESS DRAWING OF ULTRA-THIN WIRE , Applied Computer Science: Vol. 18 No. 3 (2022)
- Haechan NA, Yoon Sang KIM, STUDY ON DEEP LEARNING MODELS FOR THE CLASSIFICATION OF VR SICKNESS LEVELS , Applied Computer Science: Vol. 20 No. 4 (2024)
- Zaid ALSAYGH, Zohair AL-AMEEN, CONTRAST ENHANCEMENT OF SCANNING ELECTRON MICROSCOPY IMAGES USING A NONCOMPLEX MULTIPHASE ALGORITHM , Applied Computer Science: Vol. 18 No. 2 (2022)
- Tomasz CHMIELEWSKI, Katarzyna ZIELIŃSKA, SURVEY OF REMOTELY CONTROLLED LABORATORIES FOR RESEARCH AND EDUCATION , Applied Computer Science: Vol. 13 No. 1 (2017)
- Lukas BAUER, Leon STÜTZ, Markus KLEY, BLACK BOX EFFICIENCY MODELLING OF AN ELECTRIC DRIVE UNIT UTILIZING METHODS OF MACHINE LEARNING , Applied Computer Science: Vol. 17 No. 4 (2021)
- KK Praneeth Tellakula, Saravana Kumar R, Sanjoy Deb, A SURVEY OF AI IMAGING TECHNIQUES FOR COVID-19 DIAGNOSIS AND PROGNOSIS , Applied Computer Science: Vol. 17 No. 2 (2021)
- Krzysztof Michalczyk, Mariusz Warzecha, Robert Baran, A NEW METHOD FOR GENERATING VIRTUAL MODELS OF NONLINEAR HELICAL SPRINGS BASED ON A RIGOROUS MATHEMATICAL MODEL , Applied Computer Science: Vol. 19 No. 2 (2023)
- Amina KINANE DAOUADJI, Fatima BENDELLA, IMPROVING E-LEARNING BY FACIAL EXPRESSION ANALYSIS , Applied Computer Science: Vol. 20 No. 2 (2024)
You may also start an advanced similarity search for this article.