ENHANCING TOMATO LEAF DISEASE DETECTION THROUGH MULTIMODAL FEATURE FUSION
Article Sidebar
Open full text
Issue Vol. 20 No. 4 (2024)
-
STUDY ON DEEP LEARNING MODELS FOR THE CLASSIFICATION OF VR SICKNESS LEVELS
Haechan NA, Yoon Sang KIM1-13
-
ENHANCING TOMATO LEAF DISEASE DETECTION THROUGH MULTIMODAL FEATURE FUSION
Puja SARAF, Jayantrao PATIL, Rajnikant WAGH14-38
-
NOVEL MULTI-MODAL OBSTRUCTION MODULE FOR DIABETES MELLITUS CLASSIFICATION USING EXPLAINABLE MACHINE LEARNING
Reehana SHAIK, Ibrahim SIDDIQUE39-62
-
COMPUTATIONAL SYSTEM FOR EVALUATING HUMAN PERCEPTION IN VIDEO STEGANOGRAPHY
Marcin PERY, Robert WASZKOWSKI63-76
-
PUPIL DIAMETER AND MACHINE LEARNING FOR DEPRESSION DETECTION: A COMPARATIVE STUDY WITH DEEP LEARNING MODELS
Islam MOHAMED, Mohamed EL-WAKAD, Khaled ABBAS, Mohamed ABOAMER, Nader A. Rahman MOHAMED77-99
-
CLASSIFICATION AND PREDICTION OF BENTHIC HABITAT FROM SCIENTIFIC ECHOSOUNDER DATA: APPLICATION OF MACHINE LEARNING ALGORITHMS
Baigo HAMUNA, Sri PUJIYATI, Jonson Lumban GAOL, Totok HESTIRIANOTO100-116
-
ENHANCEMENT OF ARTIFICIAL IMMUNE SYSTEMS FOR THE TRAVELING SALESMAN PROBLEM THROUGH HYBRIDIZATION WITH NEIGHBORHOOD IMPROVEMENT AND PARAMETER FINE-TUNING
Peeraya THAPATSUWAN, Warattapop THAPATSUWAN, Chaichana KULWORATIT117-137
-
EVALUATING LARGE LANGUAGE MODELS FOR MEDICAL INFORMATION EXTRACTION: A COMPARATIVE STUDY OF ZERO-SHOT AND SCHEMA-BASED METHODS
Zakaria KADDARI, Ikram El HACHMI, Jamal BERRICH, Rim AMRANI, Toumi BOUCHENTOUF138-148
-
EXPLORING THE EXPEDIENCY OF BLOCKCHAIN-BASED SOLUTIONS: REVIEW AND CHALLENGES
Francisco Javier MORENO ARBOLEDA, Georgia GARANI, Sergio Andrés ARBOLEDA ZULUAGA149-174
-
FEASIBILITY OF USING LOW-PARAMETER LOCAL LLMS IN ANSWERING QUESTIONS FROM ENTERPRISE KNOWLEDGE BASE
Marcin BADUROWICZ, Stanisław SKULIMOWSKI, Maciej LASKOWSKI175-191
-
SHARPNESS IMPROVEMENT OF MAGNETIC RESONANCE IMAGES USING A GUIDED-SUBSUMED UNSHARP MASK FILTER
Manar AL-ABAJI, Zohair AL-AMEEN192-210
-
FUZZY REGION MERGING WITH HIERARCHICAL CLUSTERING TO FIND OPTIMAL INITIALIZATION OF FUZZY REGION IN IMAGE SEGMENTATION
Wawan GUNAWAN211-220
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
Main Article Content
DOI
Authors
Abstract
The need for an ensemble classifier arises due to better accuracy; reduced overfitting, increased robustness which handles the noisy data and reduced variance of individual models, by combining the advantages and overcoming the drawbacks of the individual classifier. We have performed a comparison of different classifiers like Support Vector Machine (SVM), XGBoost, Random Forest (RF), Naive Bayes (NB), Convolutional Neural Network (CNN) and proposed Ensemble method used in the classification task. Among all the classifiers evaluated, CNN was found to be the most accurate having an accuracy rate of 93.7%. This indicates that CNN can identify complex data patterns that are also important for photo recognition and classification tasks. Nonetheless, NB and SVM only achieved medium results with accuracy rates of 82.66% and 85.6% respectively. These could have been due to either the complexity of data being handled or underlying assumptions made. RF and XGBoost demonstrated remarkable performances by employing ensemble learning methods as well as gradient-boosting approaches with accuracies of 83.33% and 90.7% respectively. Our Ensemble method outstripped all individual models at an accuracy level of 95.5%, indicating that more than one technique is better when classifying correctly based on various resource allocations across techniques employed thereby improving such outcomes altogether by combining them. These results display the pros and cons of every classifier on the Plant Village dataset, giving vital data to improve plant disease classification and guide further research into precision farming and agricultural diagnostics.
Keywords:
References
Afroz, T., Shoumik, T. M., Emon, S. H., Hossain, S., & Nayla, N. (2023). An effective method for detecting tomato leaves disease using distributed Neural Networks. 26th International Conference on Computer and Information Technology (ICCIT) (pp. 1-6). IEEE. https://doi.org/10.1109/ICCIT60459.2023.10441629 DOI: https://doi.org/10.1109/ICCIT60459.2023.10441629
Ansah, P., Tetarave1, S. K., Kalaimannan, E., & John, C. (2023). Tomato disease fusion and classification using Deep Learning. International Journal on Cybernetics & Informatics, 12(7), 31-43. https://doi.org/10.5121/ijci.2023.120703 DOI: https://doi.org/10.5121/ijci.2023.120703
Ashok, S., Kishore, G., Rajesh, V., Suchitra, S., Sophia, S. G., & Pavithra, B. (2020). Tomato leaves disease detection using deep learning techniques. 2020 5th International Conference on Communication and Electronics Systems (ICCES) (pp. 979-983). IEEE. https://doi.org/10.1109/ICCES48766.2020.9137986 DOI: https://doi.org/10.1109/ICCES48766.2020.9137986
Ashqar, B. A. M., & Abu-Naser, S. S. (2018). Image-based Tomato leaves diseases detection using deep learning. International Journal of Engineering Research, 2(12), 10-16.
Atasever, S., Azginoglu, N., Terzi, D. S., & Terzi, R. (2023). A comprehensive survey of deep learning research on medical image analysis with focus on transfer learning. Clinical Imaging, 94, 18-41. https://doi.org/10.1016/j.clinimag.2022.11.003 DOI: https://doi.org/10.1016/j.clinimag.2022.11.003
Banerjee, D., Kukreja, V., Hariharan, S., Jain, V., & Jindal, V. (2023). Hybrid CNN & random forest approach for accurate identification of tomato plant diseases. 2023 World Conference on Communication & Computing (WCONF) (pp. 1-6). IEEE. https://doi.org/10.1109/WCONF58270.2023.10235210 DOI: https://doi.org/10.1109/WCONF58270.2023.10235210
Basavaiah, J., & Arlene Anthony, A. (2020). Tomato leaves disease detection using multiple feature extraction techniques. Wireless Personal Communications, 115, 633-651. https://doi.org/10.1007/s11277-020-07590-x DOI: https://doi.org/10.1007/s11277-020-07590-x
Chen, H. C., Widodo, A. M., Wisnujati, A., Rahaman, M., Lin, J. C. W., Chen, L., & Weng, C. E. (2022). AlexNet convolutional neural network for disease detection and classification of tomato leaves. Electronics, 11(6), 951. https://doi.org/10.3390/electronics11060951 DOI: https://doi.org/10.3390/electronics11060951
Chouhan, S. S., Kaul, A., Singh, U. P., & Jain, S. (2018). Bacterial foraging optimization based radial basis function neural network (BRBFNN) for identification and classification of plant leaves diseases: An automatic approach towards plant pathology. IEEE Access, 6, 8852-8863. https://doi.org/10.1109/ACCESS.2018.2800685 DOI: https://doi.org/10.1109/ACCESS.2018.2800685
Chowdhury, M. E., Rahman, T., Khandakar, A., Ayari, M. A., Khan, A. U., Khan, M. S., Al-Emadi, N., Reaz, M. B. I., Islam, T. M., & Ali, S. H. M. (2021). Automatic and reliable leaves disease detection using deep learning techniques. AgriEngineering, 3(2), 294-312. https://doi.org/10.3390/agriengineering3020020 DOI: https://doi.org/10.3390/agriengineering3020020
Ghazouani, H., Barhoumi, W., Chakroun, E., & Chehri, A. (2023). Dealing with unbalanced data in leaves disease detection: A comparative study of hierarchical classification, clustering-based undersampling and reweighting-based approaches. Procedia Computer Science, 225, 4891-4900. https://doi.org/10.1016/j.procs.2023.10.489 DOI: https://doi.org/10.1016/j.procs.2023.10.489
Islam, M. S., Sultana, S., Farid, F. A., Islam, M. N., Rashid, M., Bari, B. S., Hashim, N., & Husen, M. N. (2022). Multimodal hybrid Deep Learning approach to detect tomato leaf disease using attention based dilated convolution feature extractor with logistic regression classification. Sensors, 22(16), 6079. https://doi.org/10.3390/s22166079 DOI: https://doi.org/10.3390/s22166079
Kokate, J. K., Kumar, S., & Kulkarni, A. G. (2023). Classification of tomato leaves disease using a custom convolutional Neural Network. Current Agriculture Research Journal, 11(1), 316-325. http://dx.doi.org/10.12944/CARJ.11.1.28 DOI: https://doi.org/10.12944/CARJ.11.1.28
Kumar, A., & Vani, M. (2019). Image based tomato leaves disease detection. 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT) (pp. 1-6). IEEE. https://doi.org/10.1109/ICCCNT45670.2019.8944692 DOI: https://doi.org/10.1109/ICCCNT45670.2019.8944692
Mohameth, F., Bingcai, C., & Sada, K. A. (2020). Plant disease detection with deep learning and feature extraction using plant village. Journal of Computer and Communications, 8(6), 10-22. https://doi.org/10.4236/jcc.2020.86002 DOI: https://doi.org/10.4236/jcc.2020.86002
Nithish Kannan, E., Kaushik, M., Prakash, P., Ajay, R., & Veni, S. (2020, June). Tomato leaves disease detection using convolutional neural network with data augmentation. 2020 5th International Conference on Communication and Electronics Systems (ICCES) (pp. 1125-1132). IEEE. https://doi.org/10.1109/ICCES48766.2020.9138030 DOI: https://doi.org/10.1109/ICCES48766.2020.9138030
Noon, S. K., Amjad, M., Qureshi, M. A., & Mannan, A. (2020). Use of Deep Learning techniques for identification of plant leaves stresses: A review. Sustainable Computing: Informatics and Systems, 28, 100443. https://doi.org/10.1016/j.suscom.2020.100443 DOI: https://doi.org/10.1016/j.suscom.2020.100443
Peyal, H. I., Nahiduzzaman, M., Pramanik, M. A. H., Syfullah, M. K., Shahriar, S. M., Sultana, A., Ahsan, M., Haider, J., Khandakar, A., & Chowdhury, M. E. H. (2023). Plant disease classifier: Detection of dual-crop diseases using lightweight 2d cnn architecture. IEEE Access, 11, 110627-110643. https://doi.org/10.1109/ACCESS.2023.3320686 DOI: https://doi.org/10.1109/ACCESS.2023.3320686
Salve, P., Sardesai, M., & Yannawar, P. (2019). Classification of Plants Using GIST and LBP score level fusion. In S. M. Thampi, O. Marques, S. Krishnan, K.-C. Li, D. Ciuonzo, & M. H. Kolekar (Eds.), Advances in Signal Processing and Intelligent Recognition Systems (Vol. 968, pp. 15-29). Springer Singapore. https://doi.org/10.1007/978-981-13-5758-9_2 DOI: https://doi.org/10.1007/978-981-13-5758-9_2
Salve, P., Sardesai, M., & Yannawar, P. (2021). Combining multiple classifiers using hybrid votes technique with leaf vein angle, CNN and gabor features for plant recognition. In K. C. Santosh & B. Gawali (Eds.), Recent Trends in Image Processing and Pattern Recognition (Vol. 1381, pp. 313-331). Springer Singapore. https://doi.org/10.1007/978-981-16-0493-5_28 DOI: https://doi.org/10.1007/978-981-16-0493-5_28
Salve, P., Yannawar, P., & Sardesai, M. (2022). Multimodal plant recognition through Ensemble feature fusion technique using imaging and non-imaging hyper-spectral data. Journal of King Saud University-Computer and Information Sciences, 34(1), 1361-1369. https:doi.org/10.1016/j.jksuci.2018.09.018 DOI: https://doi.org/10.1016/j.jksuci.2018.09.018
Shahoveisi, F., Taheri Gorji, H., Shahabi, S., Hosseinirad, S., Markell, S., & Vasefi, F. (2023). Application of image processing and transfer learning for the detection of rust disease. Scientific Reports, 13, 5133. https://doi.org/10.1038/s41598-023-31942-9 DOI: https://doi.org/10.1038/s41598-023-31942-9
Too, E. C., Yujian, L., Njuki, S., & Yingchun, L. (2019). A comparative study of fine-tuning deep learning models for plant disease identification. Computers and Electronics in Agriculture, 161, 272-279. https://doi.org/10.1016/j.compag.2018.03.032 DOI: https://doi.org/10.1016/j.compag.2018.03.032
Towfek, S. K., & Khodadadi, N. (2023). Deep convolutional neural network and metaheuristic optimization for disease detection in plant leaves. Journal of Intelligent Systems and Internet of Things, 10(1), 66-75. https://doi.org/10.54216/JISIoT.100105 DOI: https://doi.org/10.54216/JISIoT.100105
Vadivel, T., & Suguna, R. (2021). Automatic recognition of tomato leaves disease using fast enhanced learning with image processing, Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 72(1), 312-324. https://doi.org/10.1080/09064710.2021.1976266 DOI: https://doi.org/10.1080/09064710.2021.1976266
Wagle, S. A., & R, H. (2021). A Deep Learning-based approach in classification and validation of tomato leaves disease. Traitement du signal, 38(3), 699-709. https://doi.org/10.18280/ts.380317 DOI: https://doi.org/10.18280/ts.380317
Wu, Q., Chen, Y., & Meng, J. (2020). DCGAN-based data augmentation for Tomato leaves disease identification. IEEE access, 8, 98716-98728. https://doi.org/10.1109/ACCESS.2020.2997001 DOI: https://doi.org/10.1109/ACCESS.2020.2997001
Article Details
Abstract views: 651
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
