CLASSIFICATION OF EEG SIGNAL BY METHODS OF MACHINE LEARNING
Amina ALYAMANI
amina.alyamani@yahoo.comOmar Al-Mukhtar University, Faculty of Engineering, Department of Computer Science, West Shiha, Dernah (Libya)
Oleh YASNIY
* Ternopil Ivan Pul’uj National Technical University, Faculty of Computer Information Systems and Software Engineering, Department of Mathematical Methods in Engineering, Ruska 56, 46001, Ternopil (Ukraine)
Abstract
Electroencephalogram (EEG) signal of two healthy subjects that was available from literature, was studied using the methods of machine learning, namely, decision trees (DT), multilayer perceptron (MLP), K-nearest neighbours (kNN), and support vector machines (SVM). Since the data were imbalanced, the appropriate balancing was performed by Kmeans clustering algorithm. The original and balanced data were classified by means of the mentioned above 4 methods. It was found, that SVM showed the best result for the both datasets in terms of accuracy. MLP and kNN produce the comparable results which are almost the same. DT accuracies are the lowest for the given dataset, with 83.82% for the original data and 61.48% for the balanced data.
Keywords:
machine learning, EEG signal, classification, data balancing, feature extractionReferences
Altman, N. S. (1992). An introduction to kernel and nearest-neighbor nonparametric regression. The American Statistician, 46(3), 175–185.
DOI: https://doi.org/10.1080/00031305.1992.10475879
Google Scholar
Amin, H. U., Mumtaz, W., Subhani, A. R., Saad, M. N. M., & Malik, A. S. (2017). Classification of EEG Signals Based on Pattern Recognition Approach. Frontiers in Computational Neuroscience, 11(103), 1–12.
DOI: https://doi.org/10.3389/fncom.2017.00103
Google Scholar
Bryant, R. A., & Sindicich, N. (2007). Hypnosis and Thought Suppression – More Data: A Brief Communication. International Journal of Clinical and Experimental Hypnosis, 56(1), 37–46.
DOI: https://doi.org/10.1080/00207140701672995
Google Scholar
Cortes, C., & Vapnik, V. N. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.
DOI: https://doi.org/10.1007/BF00994018
Google Scholar
Dvey-Aharon, Z., Fogelson, N., Peled, A, & Intrator, N. (2015). Schizophrenia Detection and Classification by Advanced Analysis of EEG Recordings Using a Single Electrode Approach. PLoS ONE, 10(4), 1–12.
DOI: https://doi.org/10.1371/journal.pone.0123033
Google Scholar
Haykin, S. (Ed.). (2009). Neural Networks and Learning Machines (3rd Edition). New Jersey, Prentice Hall.
Google Scholar
Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504–507.
DOI: https://doi.org/10.1126/science.1127647
Google Scholar
Lawhern, V., Hairston, W. D., McDowell, K., Westerfield, M., & Robbins, K. (2012). Detection and classification of subject-generated artifacts in EEG signals using autoregressive models. Journal of Neuroscience Methods, 208(2), 181–189.
DOI: https://doi.org/10.1016/j.jneumeth.2012.05.017
Google Scholar
Li, J., Struzik, Z., Zhang, L., & Cichocki, A. (2015). Feature learning from incomplete EEG with denoising autoencoder. Neurocomputing, 165, 23–31.
DOI: https://doi.org/10.1016/j.neucom.2014.08.092
Google Scholar
MacQueen, J. B. (1967). Some Methods for classification and Analysis of Multivariate Observations. Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability – Volume 1: Statistics, 281–297.
Google Scholar
Parvinnia, E., Sabeti, M., Zolghadri Jahromi, M., & Boostani, R. (2014). Classification of EEG Signals using Adaptive Weighted Distance Nearest Neighbor Algorithm. Journal of King Saud University – Computer and Information Sciences, 26(1), 1–6.
DOI: https://doi.org/10.1016/j.jksuci.2013.01.001
Google Scholar
Podgorelec, V. (2012). Analyzing EEG signals with machine learning for diagnosing Alzheimer’s disease. Elektronika i Elektrotechnika, 18(8), 61–64.
DOI: https://doi.org/10.5755/j01.eee.18.8.2627
Google Scholar
Provençal, S. C., Bond, S., Rizkallah, E., & El-Baalbaki, G. (2018). Hypnosis for burn wound care pain and anxiety: A systematic review and meta-analysis. Burns, 44(8), 1870–1881.
DOI: https://doi.org/10.1016/j.burns.2018.04.017
Google Scholar
Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1, 81–106.
DOI: https://doi.org/10.1007/BF00116251
Google Scholar
Real, R. G. L., & Kübler, A. (2014). Auditory oddball paradigm during hypnosis. Institute of Psychology, University of Würzburg.
Google Scholar
Sanei, S., & Chambers, J. A. (Eds.). (2007). EEG Signal processing. Great Britain, Chippenham, John Wiley & Sons.
DOI: https://doi.org/10.1002/9780470511923
Google Scholar
Satapathy, S. K., Jagadev, A. K., & Dehuri, S. (2017). Weighted majority voting based ensemble of classifiers using different machine learning techniques for classification of EEG signal to detect epileptic seizure. Informatica, 41(1), 99–110.
Google Scholar
Sun, L., Jin, B., Yang, B., Tong, J., Liu, C., & Xiong, H. (2019). Unsupervised EEG Feature Extraction Based on Echo State Network. Information Sciences, 475, 1–17.
DOI: https://doi.org/10.1016/j.ins.2018.09.057
Google Scholar
Terhune, D. B., Cleeremans, A., Raz, A., & Lynn, S. J. (2017). Hypnosis and top-down regulation of consciousness. Neuroscience and Biobehavioral Reviews, 81(A), 59–74.
DOI: https://doi.org/10.1016/j.neubiorev.2017.02.002
Google Scholar
Thilakvathi, B., Shenbaga, Devi, S., Bhanu, K., & Malaippan, M. (2017). EEG signal complexity analysis for schizophrenia during rest and mental activity. Biomedical Research, 28(1): 1–9.
Google Scholar
Wood, C., & Bioy, A. (2008). Hypnosis and Pain in Children. Journal of Pain and Symptom Management, 35(4), 437–446.
DOI: https://doi.org/10.1016/j.jpainsymman.2007.05.009
Google Scholar
Authors
Amina ALYAMANIamina.alyamani@yahoo.com
Omar Al-Mukhtar University, Faculty of Engineering, Department of Computer Science, West Shiha, Dernah Libya
Authors
Oleh YASNIY* Ternopil Ivan Pul’uj National Technical University, Faculty of Computer Information Systems and Software Engineering, Department of Mathematical Methods in Engineering, Ruska 56, 46001, Ternopil Ukraine
Statistics
Abstract views: 244PDF downloads: 30
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
Most read articles by the same author(s)
- Nataliya SHABLIY, Serhii LUPENKO, Nadiia LUTSYK, Oleh YASNIY, Olha MALYSHEVSKA, KEYSTROKE DYNAMICS ANALYSIS USING MACHINE LEARNING METHODS , Applied Computer Science: Vol. 17 No. 4 (2021)
Similar Articles
- Puppala Praneeth, Majety Sathvika, Vivek Kommareddy, Madala Sarath, Saran Mallela, Koneru Suvarna Vani, Prasun Chkrabarti, CLASSIFICATION OF PARKINSON'S DISEASE IN BRAIN MRI IMAGES USING DEEP RESIDUAL CONVOLUTIONAL NEURAL NETWORK , Applied Computer Science: Vol. 19 No. 2 (2023)
- Mohanad ABDULHAMID, Njagi KINYUA, SOFTWARE FOR RECOGNITION OF CAR NUMBER PLATE , Applied Computer Science: Vol. 16 No. 1 (2020)
- Weronika WACH, Kinga CHWALEBA, GAP FILLING ALGORITHM FOR MOTION CAPTURE DATA TO CREATE REALISTIC VEHICLE ANIMATION , Applied Computer Science: Vol. 20 No. 3 (2024)
- Zahid Zamir, CAN THE SYSTEM, INFORMATION, AND SERVICE QUALITIES IMPACT EMPLOYEE LEARNING, ADAPTABILITY, AND JOB SATISFACTION? , Applied Computer Science: Vol. 19 No. 1 (2023)
- Pannangi Naresh, R. Suguna, IMPLEMENTATION OF DYNAMIC AND FAST MINING ALGORITHMS ON INCREMENTAL DATASETS TO DISCOVER QUALITATIVE RULES , Applied Computer Science: Vol. 17 No. 3 (2021)
- Xianlei GE, Vladimir MARIANO, RETRACTED PAPER: Enhancing 3D human pose estimation through multi-feature fusion , Applied Computer Science: Vol. 19 No. 3 (2023)
- Siti ROHAJAWATI, Hutanti SETYODEWI, Ferryansyah Muji Agustian TRESNANTO, Debora MARIANTHI, Maruli Tua Baja SIHOTANG , KNOWLEDGE MANAGEMENT APPROACH IN COMPARATIVE STUDY OF AIR POLLUTION PREDICTION MODEL , Applied Computer Science: Vol. 20 No. 1 (2024)
- Marcin MACIEJEWSKI, Barbara MACIEJEWSKA, Robert KARPIŃSKI, Przemysław KRAKOWSKI, ELECTROCARDIOGRAM GENERATION SOFTWARE FOR TESTING OF PARAMETER EXTRACTION ALGORITHMS , Applied Computer Science: Vol. 16 No. 4 (2020)
- Jolanta Brzozowska, Arkadiusz Gola, COMPUTER AIDED ASSEMBLY PLANNING USING MS EXCEL SOFTWARE – A CASE STUDY , Applied Computer Science: Vol. 17 No. 2 (2021)
- Robert KARPIŃSKI, Anna MACHROWSKA, Marcin MACIEJEWSKI, APPLICATION OF ACOUSTIC SIGNAL PROCESSING METHODS IN DETECTING DIFFERENCES BETWEEN OPEN AND CLOSED KINEMATIC CHAIN MOVEMENT FOR THE KNEE JOINT , Applied Computer Science: Vol. 15 No. 1 (2019)
<< < 2 3 4 5 6 7 8 9 10 11 > >>
You may also start an advanced similarity search for this article.