APPLICATION OF IMAGE ANALYSIS TO THE IDENTIFICATION OF MASS INERTIA MOMENTUM IN ELECTROMECHANICAL SYSTEM WITH CHANGEABLE BACKLASH ZONE

Marcin TOMCZYK

tomczykmarcin@poczta.fm
* Electrical School No. 1 in Krakow them. Silesian Insurgents, Kamieńskiego 49, 30-644 Kraków (Poland)

Anna PLICHTA


Cracow Univeristy of Technology, Faculty of Physics, Mathematics and Computer Science, Institute of Computer Science, Warszawska 24, 31-155 Kraków (Poland)

Mariusz MIKULSKI


State University of Applied Sciences in Nowy Sącz, Institute of Technology, Zamenhofa 1a, 33-300 Nowy Sącz (Poland)

Abstract

This paper presents a new method of identification of inertia moment of reduced masses on a shaft of an induction motor drive being a part of an electromechanical system. The study shows the results of simulations performed on the tested model of a complex electromechanical system during some changes of a backlash zone width. An analysis of wavelet scalograms of the examined signals carried out using a clustering technique was applied in the diagnostic algorithm. The correctness of the earliest fault detection has been verified during monitoring and identification of mass inertia moment for state variables describing physical quantities of a tested complex of the electromechanical system.


Keywords:

inertia moment, induction motor, wavelet transformation, backlash zone, membership function

Divdel, H., Moghaddam, M. H., & Alipour, G. (2016). A new diagnosis of severity broken rotor bar fault based modeling and image processing system. Journal of Current Research in Science, S(1), 771–780.
  Google Scholar

Duda, J. T. (2007). Pozyskiwanie wzorców diagnostycznych w komputerowych analizach sprawności urządzeń. Diagnostyka procesów i systemów. Warsaw, Poland: Akademicka Oficyna Wydawnicza EXIT.
  Google Scholar

Frąckiewicz, M. (2011). Zastosowanie techniki KHM (k-średnich harmonicznych) w przetwarzaniu obrazów barwnych (Unpublished doctoral dissertation). Silesian University of Technology, Gliwice.
  Google Scholar

Głowacz, A., & Głowacz, Z. (2017). Diagnosis of the three-phase induction motor using thermal imaging. Infrared & Physics Technology, 81, 7–16.
DOI: https://doi.org/10.1016/j.infrared.2016.12.003   Google Scholar

Hasiewicz, Z., & Śliwiński, P. (2005). Falki ortogonalne o zwartym nośniku. Warsaw, Poland: Akademicka Oficyna Wydawnicza EXIT.
  Google Scholar

Korbicz, J., Kościelny, J. M., & Kowalczuk, Z. (2002). Diagnostyka procesów. Modele. Metody sztucznej inteligencji. Zastosowania. Warsaw, Poland: WNT.
  Google Scholar

Looney, C. G. (1997). Pattern recognition using neural networks. New York, USA: Oxford University Press.
  Google Scholar

Download


Published
2019-09-30

Cited by

TOMCZYK, M., PLICHTA, A., & MIKULSKI, M. . (2019). APPLICATION OF IMAGE ANALYSIS TO THE IDENTIFICATION OF MASS INERTIA MOMENTUM IN ELECTROMECHANICAL SYSTEM WITH CHANGEABLE BACKLASH ZONE. Applied Computer Science, 15(3), 87–102. https://doi.org/10.23743/acs-2019-24

Authors

Marcin TOMCZYK 
tomczykmarcin@poczta.fm
* Electrical School No. 1 in Krakow them. Silesian Insurgents, Kamieńskiego 49, 30-644 Kraków Poland

Authors

Anna PLICHTA 

Cracow Univeristy of Technology, Faculty of Physics, Mathematics and Computer Science, Institute of Computer Science, Warszawska 24, 31-155 Kraków Poland

Authors

Mariusz MIKULSKI 

State University of Applied Sciences in Nowy Sącz, Institute of Technology, Zamenhofa 1a, 33-300 Nowy Sącz Poland

Statistics

Abstract views: 88
PDF downloads: 30


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Similar Articles

<< < 1 2 3 > >> 

You may also start an advanced similarity search for this article.