NUMERICAL ANALYSIS OF THE DRAG COEFFICIENT OF A MOTORCYCLE HELMET
Zbigniew CZYŻ
z.czyz@pollub.plDepartment of Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin (Poland)
Paweł KARPIŃSKI
* Department of Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin (Poland)
Tacetdin SEVDIM
Department of Mechanical Engineering, Faculty of Engineering and Natural Sciences, Altinbas University, Mahmutbey Mah, Mahmutbey Dilmenler Cad 26, 34218 Bagcılar/Istanbul (Poland)
Abstract
The paper discusses a numerical investigation, using a CFD tool, ANSYS FLUENT, of drag acting on a motorcycle helmet. The simulations were performed on a model of a helmet downloaded from a free CAD model library. A solid model enabled us to generate a mesh, to define boundary conditions and to specify a model of turbulence. Accordingly, the values of forces acting on individual sections of the helmet were obtained and the coefficients of aerodynamic drag were calculated. The test results can be used to optimize the shape of the existing motorcycle helmet construction and to study the impact of generated drag forces on reaction forces affecting a motorcyclist’s body.
Keywords:
numerical analysis, CFD, drag coefficient, motorcycle helmetReferences
Alam, F., Chowdhurya, H., Zhi Weia, H., Mustarya, I., & Zimmerb, G. (2014). Aerodynamics of ribbed bicycle racing helmets. Procedia Engineering, 72, 691–696. https://doi.org/10.1016/j.proeng.2014.06.117
DOI: https://doi.org/10.1016/j.proeng.2014.06.117
Google Scholar
Beaumont, F., Taiara, R., Polidori, G., Trenchard, H., & Grappe, F. (2018). Aerodynamic study of timetrial helmets in cycling racing using CFD analysis. Journal of Biomechanics, 67, 1–8. https://doi.org/10.1016/j.jbiomech.2017.10.042
DOI: https://doi.org/10.1016/j.jbiomech.2017.10.042
Google Scholar
Blocken, B., & Toparlar, Y. (2015). A following car influences cyclist drag: CFD simulations and wind tunnel measurements. Journal of Wind Engineering and Industrial Aerodynamics, 145, 178–186. https://doi.org/10.1016/j.jweia.2015.06.015
DOI: https://doi.org/10.1016/j.jweia.2015.06.015
Google Scholar
Blocken, B., Defraeye, T., Koninckx, E., Carmeliet, J., & Hespel, P. (2013). CFD simulations of the aerodynamic drag of two drafting cyclists. Computers & Fluids, 71, 435–445. https://doi.org/10.1016/j.compfluid.2012.11.012
DOI: https://doi.org/10.1016/j.compfluid.2012.11.012
Google Scholar
Blocken, B., Toparlar, Y., & Andrianne, T. (2016). Aerodynamic benefit for a cyclist by a following motorcycle. Journal of Wind Engineering and Industrial Aerodynamics, 155, 1–10. https://doi.org/10.1016/j.jweia.2016.04.008
DOI: https://doi.org/10.1016/j.jweia.2016.04.008
Google Scholar
Brownlie, L., Kyle, C., Carbo, J., Demarest, N., & Harber, E. (2009). Streamlining the time trial apparel of cyclists: the Nike Swift Spin project. Sports Technology, 2, 53–60. https://doi.org/10.1002/jst.12
DOI: https://doi.org/10.1080/19346182.2009.9648499
Google Scholar
Brownlie, L., Ostafichuk, P., Tews, E., Muller, H., Briggs, E., & Franks, K. (2010). The windaveraged aerodynamic drag of competitive time trial cycling helmets. Procedia Engineering, 2, 2419–2424. https://doi.org/10.1016/j.proeng.2010.04.009
DOI: https://doi.org/10.1016/j.proeng.2010.04.009
Google Scholar
Fernandes, F. A., & Alves de Sousa, R. J. (2013). Motorcycle helmets – a state of the art review. Accident Analysis & Prevention, 56, 1-21. https://doi.org/10.1016/j.aap.2013.03.011
DOI: https://doi.org/10.1016/j.aap.2013.03.011
Google Scholar
Rice, T. M., Troszak, L., Ouellet, J. V., Erhardt, T., Smith, G. S., & Tsai, B.W. (2016). Motorcycle helmet use and the risk of head, neck, and fatal injury: Revisiting the Hurt Study. Accident Analysis and Prevention, 91, 200–207. https://doi.org/10.1016/j.aap.2016.03.002
DOI: https://doi.org/10.1016/j.aap.2016.03.002
Google Scholar
United Nations Economic Commission for Europe. (2016). The United Nations Motorcycle Helmet
Google Scholar
Study, United Nations, New York and Geneva. https://doi.org/10.18356/82cd1e4b-en
DOI: https://doi.org/10.18356/82cd1e4b-en
Google Scholar
Authors
Zbigniew CZYŻz.czyz@pollub.pl
Department of Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin Poland
Authors
Paweł KARPIŃSKI* Department of Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin Poland
Authors
Tacetdin SEVDIMDepartment of Mechanical Engineering, Faculty of Engineering and Natural Sciences, Altinbas University, Mahmutbey Mah, Mahmutbey Dilmenler Cad 26, 34218 Bagcılar/Istanbul Poland
Statistics
Abstract views: 281PDF downloads: 26
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
Most read articles by the same author(s)
- Zbigniew CZYŻ, Paweł KARPIŃSKI, Krzysztof SKIBA, Szymon BARTKOWSKI, NUMERICAL CALCULATIONS OF WATER DROP USING A FIREFIGHTING AIRCRAFT , Applied Computer Science: Vol. 19 No. 3 (2023)
- Konrad PIETRYKOWSKI, Paweł KARPIŃSKI, SIMULATION STUDY OF HYDRODYNAMIC CAVITATION IN THE ORIFICE FLOW , Applied Computer Science: Vol. 18 No. 3 (2022)
- Paweł KARPIŃSKI, THE INFLUENCE OF THE INJECTION TIMING ON THE PERFORMANCE OF TWO-STROKE OPPOSED-PISTON DIESEL ENGINE , Applied Computer Science: Vol. 14 No. 2 (2018)
Similar Articles
- Grzegorz SUCHANEK, Roman FILIPEK, COMPUTATIONAL FLUID DYNAMICS (CFD) AIDED DESIGN OF A MULTI-ROTOR FLYING ROBOT FOR LOCATING SOURCES OF PARTICULATE MATTER POLLUTION , Applied Computer Science: Vol. 18 No. 3 (2022)
- Łukasz WOŹNIAK, Paweł SURDACKI, Leszek JAROSZYŃSKI, THE NUMERICAL MODEL OF 2G YBCO SUPERCONDUCTING TAPE IN THE WINDINGS OF THE TRANSFORMER , Applied Computer Science: Vol. 13 No. 2 (2017)
- Erizal ERIZAL, Mohammad DIQI, PERFORMANCE EVALUATION OF STOCK PREDICTION MODELS USING EMAGRU , Applied Computer Science: Vol. 19 No. 3 (2023)
- Mateusz Sawa, Mirosław Szala, Weronika Henzler, INNOVATIVE DEVICE FOR TENSILE STRENGTH TESTING OF WELDED JOINTS: 3D MODELLING, FEM SIMULATION AND EXPERIMENTAL VALIDATION OF TEST RIG – A CASE STUDY , Applied Computer Science: Vol. 17 No. 3 (2021)
- Nouhaila BOUALOULOU, Taoufiq BELHOUSSINE DRISSI, Benayad NSIRI, CNN AND LSTM FOR THE CLASSIFICATION OF PARKINSON'S DISEASE BASED ON THE GTCC AND MFCC , Applied Computer Science: Vol. 19 No. 2 (2023)
- Tomasz Sikora, Wanda Gryglewicz-Kacerka, APPLICATION OF GENETIC ALGORITHMS TO THE TRAVELING SALESMAN PROBLEM , Applied Computer Science: Vol. 19 No. 2 (2023)
- Zahid Zamir, CAN THE SYSTEM, INFORMATION, AND SERVICE QUALITIES IMPACT EMPLOYEE LEARNING, ADAPTABILITY, AND JOB SATISFACTION? , Applied Computer Science: Vol. 19 No. 1 (2023)
- Kadeejah ABDULSALAM, John ADEBISI, Victor DUROJAIYE, IMPLEMENTATION OF A HARDWARE TROJAN CHIP DETECTOR MODEL USING ARDUINO MICROCONTROLLER , Applied Computer Science: Vol. 17 No. 4 (2021)
- Assel SADENOVA, Oxana DENISSOVA, Marina KOZLOVA, Saule RAKHIMOVA, Arkadiusz GOLA, Saltanat SUIEUBAYEVA, Structural equation modeling (SEM) in Jamovi: An example of analyzing the impact of factors on the innovation activity of enterprises , Applied Computer Science: Vol. 21 No. 1 (2025)
- Monika KULISZ, Justyna KUJAWSKA, Zulfiya AUBAKIROVA, Gulnaz ZHAIRBAEVA, Tomasz WAROWNY, PREDICTION OF THE COMPRESSIVE STRENGTH OF ENVIRONMENTALLY FRIENDLY CONCRETE USING ARTIFICIAL NEURAL NETWORK , Applied Computer Science: Vol. 18 No. 4 (2022)
You may also start an advanced similarity search for this article.