Harnessing multi-source data for AI-driven oncology insights: Productivity, trend, and sentiment analysis
Article Sidebar
Open full text
Main Article Content
DOI
Authors
Abstract
This study aims to provide an overall view of the current status of AI publications in the entire field of oncology, encompassing productivity, emerging trends, and researchers’ sentiments. A total of 1,296 papers published between January 2019 and January 2024, were selected using the PRISMA framework. Citespace software and the R package “Biblioshiny” were utilized for bibliographic analysis. China has been the leading contributor to global production with over 2,596 publications, followed by Europe. Among 8339 authors, Kather JN was the third most prolific author and held a central position in the co-authorship network. The most prominent article emphasized the Explainability of AI methods (XAI) with a profound discussion of their potential implications and privacy in data fusion contexts. Current trends involve the utilization of supervised learning methods such as CNN, Bayesian networks, and extreme learning machines for various cancers, particularly breast, lung, brain, and skin cancer. Late image-omics fusion was the focus of various studies during 2023. Recent advancements include the use of "conductive hydrogels" and "carbon nanotubes" for flexible electronic sensors. Ninety and a half percent of the researchers viewed these advancements positively. To our knowledge, this study is the first in the field to utilize merged databases from WoS, Scopus, and PubMed. Supervised ML methods, Multimodal DL, chatbots, and intelligent wearable devices have garnered significant interest from the scientific community. However, issues related to data-sharing and the generalizability of AI algorithms are still prevalent.
Keywords:
References
Ahnen, D. J., Wade, S. W., Jones, W. F., Sifri, R., Mendoza Silveiras, J., Greenamyer, J., Guiffre, S., Axilbund, J., Spiegel, A., & You, Y. N. (2014). The increasing incidence of young-onset colorectal cancer: A call to action. Mayo Clinic Proceedings, 89(2), 216–224. https://doi.org/10.1016/j.mayocp.2013.09.006 DOI: https://doi.org/10.1016/j.mayocp.2013.09.006
Ao, J., Shao, X., Liu, Z., Liu, Q., Xia, J., Shi, Y., Qi, L., Pan, J., & Ji, M. (2023). Stimulated raman scattering microscopy enables gleason scoring of prostate core needle biopsy by a Convolutional Neural Network. Cancer Research, 83(4), 641–651. https://doi.org/10.1158/0008-5472.CAN-22-2146 DOI: https://doi.org/10.1158/0008-5472.CAN-22-2146
Beltagy, I., Lo, K., & Cohan, A. (2019). SciBERT: A pretrained language model for scientific text. 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) (pp. 3613–3618). Association for Computational Linguistics. https://doi.org/10.18653/v1/D19-1371 DOI: https://doi.org/10.18653/v1/D19-1371
Belugina, R., Karpushchenko, E., Sleptsov, A., Protoshchak, V., Legin, A., & Kirsanov, D. (2021). Developing non-invasive bladder cancer screening methodology through potentiometric multisensor urine analysis. Talanta, 234, 122696. https://doi.org/10.1016/j.talanta.2021.122696 DOI: https://doi.org/10.1016/j.talanta.2021.122696
Boehm, K. M., Khosravi, P., Vanguri, R., Gao, J., & Shah, S. P. (2022). Harnessing multimodal data integration to advance precision oncology. Nature Reviews Cancer, 22, 114–126. https://doi.org/10.1038/s41568-021-00408-3 DOI: https://doi.org/10.1038/s41568-021-00408-3
Chen, Q., Li, M., Chen, C., Zhou, P., Lv, X., & Chen, C. (2023). MDFNet: Application of multimodal fusion method based on skin image and clinical data to skin cancer classification. Journal of Cancer Research and Clinical Oncology, 149, 3287–3299. https://doi.org/10.1007/s00432-022-04180-1 DOI: https://doi.org/10.1007/s00432-022-04180-1
Chen, R. J., Lu, M. Y., Williamson, D. F. K., Chen, T. Y., Lipkova, J., Noor, Z., Shaban, M., Shady, M., Williams, M., Joo, B., & Mahmood, F. (2022). Pan-cancer integrative histology-genomic analysis via multimodal deep learning. CANCER CELL, 40(8), 865-878. https://doi.org/10.1016/j.ccell.2022.07.004 DOI: https://doi.org/10.1016/j.ccell.2022.07.004
Cuadra, A., Breuch, J., Estrada, S., Ihim, D., Hung, I., Askaryar, D., Hassanien, M., Fessele, K. L., & Landay, J. A. (2024). Digital forms for all: A holistic multimodal large language model agent for health data entry. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 8(2), 1–39. https://doi.org/10.1145/3659624 DOI: https://doi.org/10.1145/3659624
Davis, R. J., Ayo‐Ajibola, O., Lin, M. E., Swanson, M. S., Chambers, T. N., Kwon, D. I., & Kokot, N. C. (2024). Evaluation of oropharyngeal cancer information from revolutionary artificial intelligence chatbot. The Laryngoscope, 134(5), 2252–2257. https://doi.org/10.1002/lary.31191 DOI: https://doi.org/10.1002/lary.31191
Ding, S., Huang, H., Li, Z., Liu, X., & Yang, S. (2021). SCNET: A novel UGI cancer screening framework based on semantic-level multimodal data fusion. IEEE Journal of Biomedical and Health Informatics, 25(1), 143–151. https://doi.org/10.1109/JBHI.2020.2983126 DOI: https://doi.org/10.1109/JBHI.2020.2983126
Du, Y., Wang, D., Liu, M., Zhang, X., Ren, W., Sun, J., Yin, C., Yang, S., & Zhang, L. (2024). Study on the differential diagnosis of benign and malignant breast lesions using a deep learning model based on multimodal images. Journal of Cancer Research and Therapeutics, 20(2), 625–632.. https://doi.org/10.4103/jcrt.jcrt_1796_23 DOI: https://doi.org/10.4103/jcrt.jcrt_1796_23
Farina, E., Nabhen, J. J., Dacoregio, M. I., Batalini, F., & Moraes, F. Y. (2022). An overview of artificial intelligence in oncology. Future Science OA, 8(4), FSO787. https://doi.org/10.2144/fsoa-2021-0074 DOI: https://doi.org/10.2144/fsoa-2021-0074
Guo, W., Liang, W., Deng, Q., & Zou, X. (2021). A multimodal affinity fusion network for predicting the survival of breast cancer patients. Frontiers in Genetics, 12, 709027. https://doi.org/10.3389/fgene.2021.709027 DOI: https://doi.org/10.3389/fgene.2021.709027
Hajdu, S. I. (2016). Pathfinders in oncology from ancient times to the end of the Middle Ages. Cancer, 122(11), 1638–1646. https://doi.org/10.1002/cncr.29955 DOI: https://doi.org/10.1002/cncr.29955
Hood, L., & Friend, S. H. (2011). Predictive, personalized, preventive, participatory (P4) cancer medicine. Nature Reviews. Clinical Oncology, 8(3), 184–187. https://doi.org/10.1038/nrclinonc.2010.227 DOI: https://doi.org/10.1038/nrclinonc.2010.227
Horiuchi, D., Tatekawa, H., Shimono, T., Walston, S. L., Takita, H., Matsushita, S., Oura, T., Mitsuyama, Y., Miki, Y., & Ueda, D. (2024). Accuracy of ChatGPT generated diagnosis from patient’s medical history and imaging findings in neuroradiology cases. Neuroradiology, 66, 73–79. https://doi.org/10.1007/s00234-023-03252-4 DOI: https://doi.org/10.1007/s00234-023-03252-4
Huang, H., Zheng, D., Chen, H., Wang, Y., Chen, C., Xu, L., Li, G., Wang, Y., He, X., & Li, W. (2022). Fusion of CT images and clinical variables based on deep learning for predicting invasiveness risk of stage I lung adenocarcinoma. Medical Physics, 49(10), 6384–6394. https://doi.org/10.1002/mp.15903 DOI: https://doi.org/10.1002/mp.15903
Huang, S.-C., Pareek, A., Seyyedi, S., Banerjee, I., & Lungren, M. P. (2020). Fusion of medical imaging and electronic health records using deep learning: A systematic review and implementation guidelines. Npj Digital Medicine, 3, 136. https://doi.org/10.1038/s41746-020-00341-z DOI: https://doi.org/10.1038/s41746-020-00341-z
Iannantuono, G. M., Bracken-Clarke, D., Karzai, F., Choo-Wosoba, H., Gulley, J. L., & Floudas, C. S. (2024). Comparison of large language models in answering immuno-oncology questions: A cross-sectional study. The Oncologist, 29(5), 407–414. https://doi.org/10.1093/oncolo/oyae009 DOI: https://doi.org/10.1093/oncolo/oyae009
Jha, D., Smedsrud, P., Johansen, D., de Lange, T., Johansen, H., Halvorsen, P., & Riegler, M. (2021). A comprehensive study on colorectal polyp segmentation with ResUNet plus plus, conditional random field and test-time augmentation. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 25(6), 2029–2040. https://doi.org/10.1109/JBHI.2021.3049304 DOI: https://doi.org/10.1109/JBHI.2021.3049304
Karger, E., & Kureljusic, M. (2023). Artificial intelligence for cancer detection—A bibliometric analysis and avenues for future research. Current Oncology, 30(2), 1626–1647. https://doi.org/10.3390/curroncol30020125 DOI: https://doi.org/10.3390/curroncol30020125
Karpiński, R., Krakowski, P., Jonak, J., Machrowska, A., & Maciejewski, M. (2023). Comparison of selected classification methods based on machine learning as a diagnostic tool for knee joint cartilage damage based on generated vibroacoustic processes. Applied Computer Science, 19(4), 136–150. https://doi.org/10.35784/acs-2023-40 DOI: https://doi.org/10.35784/acs-2023-40
Kather, J. N., Heij, L. R., Grabsch, H. I., Loeffler, C., Echle, A., Muti, H. S., Krause, J., Niehues, J. M., Sommer, K. A. J., Bankhead, P., Kooreman, L. F. S., Schulte, J. J., Cipriani, N. A., Buelow, R. D., Boor, P., Ortiz-Bruechle, N., Hanby, A. M., Speirs, V., Kochanny, S., … Luedde, T. (2020). Pan-cancer image-based detection of clinically actionable genetic alterations. Nature Cancer, 1, 789-799. https://doi.org/10.1038/s43018-020-0087-6 DOI: https://doi.org/10.1038/s43018-020-0087-6
Koçak, M., & Akçalı, Z. (2024). Development trends and knowledge framework of artificial intelligence (AI) applications in oncology by years: A bibliometric analysis from 1992 to 2022. https://doi.org/10.21203/rs.3.rs-4260599/v1
Kuşcu, O., Pamuk, A. E., Sütay Süslü, N., & Hosal, S. (2023). Is ChatGPT accurate and reliable in answering questions regarding head and neck cancer? Frontiers in Oncology, 13, 1256459. https://doi.org/10.3389/fonc.2023.1256459 DOI: https://doi.org/10.3389/fonc.2023.1256459
Lahoura, V., Singh, H., Aggarwal, A., Sharma, B., Mohammed, M. A., Damaševičius, R., Kadry, S., & Cengiz, K. (2021). Cloud computing-based framework for breast cancer diagnosis using extreme learning machine. Diagnostics, 11(2), 241. https://doi.org/10.3390/diagnostics11020241 DOI: https://doi.org/10.3390/diagnostics11020241
Lee, C. N., Dominik, R., Levin, C. A., Barry, M. J., Cosenza, C., O’Connor, A. M., Mulley, A. G., & Sepucha, K. R. (2010). Development of instruments to measure the quality of breast cancer treatment decisions. Health Expectations: An International Journal of Public Participation in Health Care and Health Policy, 13(3), 258–272. https://doi.org/10.1111/j.1369-7625.2010.00600.x DOI: https://doi.org/10.1111/j.1369-7625.2010.00600.x
Li, Y., Li, Z., Zhang, K., Dan, R., Jiang, S., & Zhang, Y. (2023). ChatDoctor: A medical chat model fine-tuned on a large language model Meta-AI (LLaMA) using medical domain knowledge. Cureus, 15(6), e40895. https://doi.org/10.7759/cureus.40895 DOI: https://doi.org/10.7759/cureus.40895
Machrowska, A., Karpiński, R., Maciejewski, M., Jonak, J., & Krakowski, P. (2024). Application of EEMD-DFA algorithms and ANN classification for detection of knee osteoarthritis using vibroarthrography. Applied Computer Science, 20(2), 90–108. https://doi.org/10.35784/acs-2024-18 DOI: https://doi.org/10.35784/acs-2024-18
Mazur, D. J., & Hickam, D. H. (1993). Patient interpretations of terms connoting low probabilities when communicating about surgical risk. Theoretical Surgery, 8, 143–145.
McAlister, F. A., Straus, S. E., Guyatt, G. H., & Haynes, R. B. (2000). Users’ guides to the medical literature: XX. Integrating research evidence with the care of the individual patient. JAMA, 283(21), 2829–2836. https://doi.org/10.1001/jama.283.21.2829 DOI: https://doi.org/10.1001/jama.283.21.2829
Mihalache, A., Huang, R. S., Popovic, M. M., Patil, N. S., Pandya, B. U., Shor, R., Pereira, A., Kwok, J. M., Yan, P., Wong, D. T., Kertes, P. J., & Muni, R. H. (2024). Accuracy of an artificial intelligence chatbot’s interpretation of clinical ophthalmic images. JAMA Ophthalmology, 142(4), 321–326. https://doi.org/10.1001/jamaophthalmol.2024.0017 DOI: https://doi.org/10.1001/jamaophthalmol.2024.0017
Mongeon, P., & Paul-Hus, A. (2016). The journal coverage of Web of Science and Scopus: A comparative analysis. Scientometrics, 106, 213–228. https://doi.org/10.1007/s11192-015-1765-5 DOI: https://doi.org/10.1007/s11192-015-1765-5
Murugesan, M., Kaliannan, K., Balraj, S., Singaram, K., Kaliannan, T., & Albert, J. R. (2022). A hybrid deep learning model for effective segmentation and classification of lung nodules from CT images. Journal of Intelligent & Fuzzy Systems, 42(3), 2667–2679. https://doi.org/10.3233/JIFS-212189 DOI: https://doi.org/10.3233/JIFS-212189
Musa, I. H. (2021). Artificial intelligence and machine learning in oncology: Historical overview of documents indexed in the Web of Science database. Eurasian Journal of Medicine and Oncology. https://doi.org/10.14744/ejmo.2021.24856 DOI: https://doi.org/10.14744/ejmo.2021.24856
Nair, A. B., K., A., U., A., Jaison, D. T., V., A., & Anoop, V. S. (2024). “Hey..! This medicine made me sick”: Sentiment Analysis of User-Generated Drug Reviews using Machine Learning Techniques. ArXiv, abs/2404.13057. https://doi.org/10.48550/ARXIV.2404.13057
Pang, Q., Hu, H., Zhang, H., Qiao, B., & Ma, L. (2022). Temperature-responsive ionic conductive hydrogel for strain and temperature sensors. ACS Applied Materials & Interfaces, 14(23), 26536–26547. https://doi.org/10.1021/acsami.2c06952 DOI: https://doi.org/10.1021/acsami.2c06952
Redelmeier, D. A., Rozin, P., & Kahneman, D. (1993). Understanding patients’ decisions. Cognitive and emotional perspectives. JAMA, 270(1), 72–76. https://doi.org/10.1001/jama.1993.03510010078034 DOI: https://doi.org/10.1001/jama.1993.03510010078034
Reyna, V. F., Nelson, W. L., Han, P. K., & Pignone, M. P. (2015). Decision making and cancer. The American Psychologist, 70(2), 105–118. https://doi.org/10.1037/a0036834 DOI: https://doi.org/10.1037/a0036834
Sarma, K., Harmon, S., Sanford, T., Roth, H., Xu, Z., Tetreault, J., Xu, D., Flores, M., Raman, A., Kulkarni, R., Wood, B., Choyke, P., Priester, A., Marks, L., Raman, S., Enzmann, D., Turkbey, B., Speier, W., & Arnold, C. (2021). Federated learning improves site performance in multicenter deep learning without data sharing. Journal of the American Medical Informatics Association, 28(6), 1259–1264. https://doi.org/10.1093/jamia/ocaa341 DOI: https://doi.org/10.1093/jamia/ocaa341
Schukow, C., Smith, S. C., Landgrebe, E., Parasuraman, S., Folaranmi, O. O., Paner, G. P., & Amin, M. B. (2024). Application of ChatGPT in routine diagnostic pathology: Promises, pitfalls, and potential future directions. Advances in Anatomic Pathology, 31(1), 15–21. https://doi.org/10.1097/PAP.0000000000000406 DOI: https://doi.org/10.1097/PAP.0000000000000406
Sekhar, A., Biswas, S., Hazra, R., Sunaniya, A. K., Mukherjee, A., & Yang, L. (2022). Brain tumor classification using fine-tuned GoogLeNet features and machine learning algorithms: IoMT enabled CAD system. IEEE Journal of Biomedical and Health Informatics, 26(3), 983–991. https://doi.org/10.1109/JBHI.2021.3100758 DOI: https://doi.org/10.1109/JBHI.2021.3100758
Seyhan, A. A., & Carini, C. (2019). Are innovation and new technologies in precision medicine paving a new era in patients centric care? Journal of Translational Medicine, 17(1), 114. https://doi.org/10.1186/s12967-019-1864-9 DOI: https://doi.org/10.1186/s12967-019-1864-9
Sidaoui, B. (2024). Predicting states of epilepsy patients using deep learning models. Applied Computer Science, 20(2), 109–125. https://doi.org/10.35784/acs-2024-19 DOI: https://doi.org/10.35784/acs-2024-19
Teymourian, H., Parrilla, M., Sempionatto, J. R., Montiel, N. F., Barfidokht, A., Van Echelpoel, R., De Wael, K., & Wang, J. (2020). Wearable electrochemical sensors for the monitoring and screening of drugs. ACS Sensors, 5(9), 2679–2700. https://doi.org/10.1021/acssensors.0c01318 DOI: https://doi.org/10.1021/acssensors.0c01318
Tian, Q., Price, N. D., & Hood, L. (2012). Systems cancer medicine: Towards realization of predictive, preventive, personalized and participatory (P4) medicine. Journal of Internal Medicine, 271(2), 111–121. https://doi.org/10.1111/j.1365-2796.2011.02498.x DOI: https://doi.org/10.1111/j.1365-2796.2011.02498.x
Truhn, D., Loeffler, C. M. L., Mueller-Franzes, G., Nebelung, S., Hewitt, K. J., Brandner, S., Bressem, K. K., Foersch, S., & Kather, J. N. (2024). Extracting structured information from unstructured histopathology reports using generative pre-trained transformer 4 (GPT-4). Journal of Pathology, 262(3), 310–319. https://doi.org/10.1002/path.6232 DOI: https://doi.org/10.1002/path.6232
Wu, T., Duan, Y., Zhang, T., Tian, W., Liu, H., & Deng, Y. (2022). Research trends in the application of artificial intelligence in oncology: A bibliometric and network visualization study. Frontiers in Bioscience-Landmark, 27(9), 254. https://doi.org/10.31083/j.fbl2709254 DOI: https://doi.org/10.31083/j.fbl2709254
Younis, M. C. (2024). Prediction of patient’s willingness for treatment of mental illness using machine learning approaches. Applied Computer Science, 20(2), 175–193. https://doi.org/10.35784/acs-2024-23 DOI: https://doi.org/10.35784/acs-2024-23
Article Details
Abstract views: 76
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.