Harnessing multi-source data for AI-driven oncology insights: Productivity, trend, and sentiment analysis

Wissal EL HABTI

wissal.elhabti@etu.uae.ac.ma
Abdelmalek Essaadi University, Faculty of Science and Technologies, Intelligent Automation and BioMedGenomics laboratory (Morocco)
https://orcid.org/0009-0009-4916-3058

Abdellah AZMANI


Abdelmalek Essaadi University (Morocco)
https://orcid.org/0000-0003-4975-3807

Abstract

This study aims to provide an overall view of the current status of AI publications in the entire field of oncology, encompassing productivity, emerging trends, and researchers’ sentiments. A total of 1,296 papers published between January 2019 and January 2024, were selected using the PRISMA framework. Citespace software and the R package “Biblioshiny” were utilized for bibliographic analysis. China has been the leading contributor to global production with over 2,596 publications, followed by Europe. Among 8339 authors, Kather JN was the third most prolific author and held a central position in the co-authorship network. The most prominent article emphasized the Explainability of AI methods (XAI) with a profound discussion of their potential implications and privacy in data fusion contexts. Current trends involve the utilization of supervised learning methods such as CNN, Bayesian networks, and extreme learning machines for various cancers, particularly breast, lung, brain, and skin cancer. Late image-omics fusion was the focus of various studies during 2023. Recent advancements include the use of "conductive hydrogels" and "carbon nanotubes" for flexible electronic sensors. Ninety and a half percent of the researchers viewed these advancements positively. To our knowledge, this study is the first in the field to utilize merged databases from WoS, Scopus, and PubMed. Supervised ML methods, Multimodal DL, chatbots, and intelligent wearable devices have garnered significant interest from the scientific community. However, issues related to data-sharing and the generalizability of AI algorithms are still prevalent.

Supporting Agencies

National Center for Scientific and Technical Research (CNRST) of Morocco under the ‘PhD-Associate Scholarship – PASS’ program

Keywords:

oncology, bibliometric analysis, AI, multimodal learning, chatbots, wearables

Ahnen, D. J., Wade, S. W., Jones, W. F., Sifri, R., Mendoza Silveiras, J., Greenamyer, J., Guiffre, S., Axilbund, J., Spiegel, A., & You, Y. N. (2014). The increasing incidence of young-onset colorectal cancer: A call to action. Mayo Clinic Proceedings, 89(2), 216–224. https://doi.org/10.1016/j.mayocp.2013.09.006
  Google Scholar

Ao, J., Shao, X., Liu, Z., Liu, Q., Xia, J., Shi, Y., Qi, L., Pan, J., & Ji, M. (2023). Stimulated raman scattering microscopy enables gleason scoring of prostate core needle biopsy by a Convolutional Neural Network. Cancer Research, 83(4), 641–651. https://doi.org/10.1158/0008-5472.CAN-22-2146
  Google Scholar

Beltagy, I., Lo, K., & Cohan, A. (2019). SciBERT: A pretrained language model for scientific text. 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) (pp. 3613–3618). Association for Computational Linguistics. https://doi.org/10.18653/v1/D19-1371
  Google Scholar

Belugina, R., Karpushchenko, E., Sleptsov, A., Protoshchak, V., Legin, A., & Kirsanov, D. (2021). Developing non-invasive bladder cancer screening methodology through potentiometric multisensor urine analysis. Talanta, 234, 122696. https://doi.org/10.1016/j.talanta.2021.122696
  Google Scholar

Boehm, K. M., Khosravi, P., Vanguri, R., Gao, J., & Shah, S. P. (2022). Harnessing multimodal data integration to advance precision oncology. Nature Reviews Cancer, 22, 114–126. https://doi.org/10.1038/s41568-021-00408-3
  Google Scholar

Chen, Q., Li, M., Chen, C., Zhou, P., Lv, X., & Chen, C. (2023). MDFNet: Application of multimodal fusion method based on skin image and clinical data to skin cancer classification. Journal of Cancer Research and Clinical Oncology, 149, 3287–3299. https://doi.org/10.1007/s00432-022-04180-1
  Google Scholar

Chen, R. J., Lu, M. Y., Williamson, D. F. K., Chen, T. Y., Lipkova, J., Noor, Z., Shaban, M., Shady, M., Williams, M., Joo, B., & Mahmood, F. (2022). Pan-cancer integrative histology-genomic analysis via multimodal deep learning. CANCER CELL, 40(8), 865-878. https://doi.org/10.1016/j.ccell.2022.07.004
  Google Scholar

Cuadra, A., Breuch, J., Estrada, S., Ihim, D., Hung, I., Askaryar, D., Hassanien, M., Fessele, K. L., & Landay, J. A. (2024). Digital forms for all: A holistic multimodal large language model agent for health data entry. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 8(2), 1–39. https://doi.org/10.1145/3659624
  Google Scholar

Davis, R. J., Ayo‐Ajibola, O., Lin, M. E., Swanson, M. S., Chambers, T. N., Kwon, D. I., & Kokot, N. C. (2024). Evaluation of oropharyngeal cancer information from revolutionary artificial intelligence chatbot. The Laryngoscope, 134(5), 2252–2257. https://doi.org/10.1002/lary.31191
  Google Scholar

Ding, S., Huang, H., Li, Z., Liu, X., & Yang, S. (2021). SCNET: A novel UGI cancer screening framework based on semantic-level multimodal data fusion. IEEE Journal of Biomedical and Health Informatics, 25(1), 143–151. https://doi.org/10.1109/JBHI.2020.2983126
  Google Scholar

Du, Y., Wang, D., Liu, M., Zhang, X., Ren, W., Sun, J., Yin, C., Yang, S., & Zhang, L. (2024). Study on the differential diagnosis of benign and malignant breast lesions using a deep learning model based on multimodal images. Journal of Cancer Research and Therapeutics, 20(2), 625–632.. https://doi.org/10.4103/jcrt.jcrt_1796_23
  Google Scholar

Farina, E., Nabhen, J. J., Dacoregio, M. I., Batalini, F., & Moraes, F. Y. (2022). An overview of artificial intelligence in oncology. Future Science OA, 8(4), FSO787. https://doi.org/10.2144/fsoa-2021-0074
  Google Scholar

Guo, W., Liang, W., Deng, Q., & Zou, X. (2021). A multimodal affinity fusion network for predicting the survival of breast cancer patients. Frontiers in Genetics, 12, 709027. https://doi.org/10.3389/fgene.2021.709027
  Google Scholar

Hajdu, S. I. (2016). Pathfinders in oncology from ancient times to the end of the Middle Ages. Cancer, 122(11), 1638–1646. https://doi.org/10.1002/cncr.29955
  Google Scholar

Hood, L., & Friend, S. H. (2011). Predictive, personalized, preventive, participatory (P4) cancer medicine. Nature Reviews. Clinical Oncology, 8(3), 184–187. https://doi.org/10.1038/nrclinonc.2010.227
  Google Scholar

Horiuchi, D., Tatekawa, H., Shimono, T., Walston, S. L., Takita, H., Matsushita, S., Oura, T., Mitsuyama, Y., Miki, Y., & Ueda, D. (2024). Accuracy of ChatGPT generated diagnosis from patient’s medical history and imaging findings in neuroradiology cases. Neuroradiology, 66, 73–79. https://doi.org/10.1007/s00234-023-03252-4
  Google Scholar

Huang, H., Zheng, D., Chen, H., Wang, Y., Chen, C., Xu, L., Li, G., Wang, Y., He, X., & Li, W. (2022). Fusion of CT images and clinical variables based on deep learning for predicting invasiveness risk of stage I lung adenocarcinoma. Medical Physics, 49(10), 6384–6394. https://doi.org/10.1002/mp.15903
  Google Scholar

Huang, S.-C., Pareek, A., Seyyedi, S., Banerjee, I., & Lungren, M. P. (2020). Fusion of medical imaging and electronic health records using deep learning: A systematic review and implementation guidelines. Npj Digital Medicine, 3, 136. https://doi.org/10.1038/s41746-020-00341-z
  Google Scholar

Iannantuono, G. M., Bracken-Clarke, D., Karzai, F., Choo-Wosoba, H., Gulley, J. L., & Floudas, C. S. (2024). Comparison of large language models in answering immuno-oncology questions: A cross-sectional study. The Oncologist, 29(5), 407–414. https://doi.org/10.1093/oncolo/oyae009
  Google Scholar

Jha, D., Smedsrud, P., Johansen, D., de Lange, T., Johansen, H., Halvorsen, P., & Riegler, M. (2021). A comprehensive study on colorectal polyp segmentation with ResUNet plus plus, conditional random field and test-time augmentation. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 25(6), 2029–2040. https://doi.org/10.1109/JBHI.2021.3049304
  Google Scholar

Karger, E., & Kureljusic, M. (2023). Artificial intelligence for cancer detection—A bibliometric analysis and avenues for future research. Current Oncology, 30(2), 1626–1647. https://doi.org/10.3390/curroncol30020125
  Google Scholar

Karpiński, R., Krakowski, P., Jonak, J., Machrowska, A., & Maciejewski, M. (2023). Comparison of selected classification methods based on machine learning as a diagnostic tool for knee joint cartilage damage based on generated vibroacoustic processes. Applied Computer Science, 19(4), 136–150. https://doi.org/10.35784/acs-2023-40
  Google Scholar

Kather, J. N., Heij, L. R., Grabsch, H. I., Loeffler, C., Echle, A., Muti, H. S., Krause, J., Niehues, J. M., Sommer, K. A. J., Bankhead, P., Kooreman, L. F. S., Schulte, J. J., Cipriani, N. A., Buelow, R. D., Boor, P., Ortiz-Bruechle, N., Hanby, A. M., Speirs, V., Kochanny, S., … Luedde, T. (2020). Pan-cancer image-based detection of clinically actionable genetic alterations. Nature Cancer, 1, 789-799. https://doi.org/10.1038/s43018-020-0087-6
  Google Scholar

Koçak, M., & Akçalı, Z. (2024). Development trends and knowledge framework of artificial intelligence (AI) applications in oncology by years: A bibliometric analysis from 1992 to 2022. https://doi.org/10.21203/rs.3.rs-4260599/v1
  Google Scholar

Kuşcu, O., Pamuk, A. E., Sütay Süslü, N., & Hosal, S. (2023). Is ChatGPT accurate and reliable in answering questions regarding head and neck cancer? Frontiers in Oncology, 13, 1256459. https://doi.org/10.3389/fonc.2023.1256459
  Google Scholar

Lahoura, V., Singh, H., Aggarwal, A., Sharma, B., Mohammed, M. A., Damaševičius, R., Kadry, S., & Cengiz, K. (2021). Cloud computing-based framework for breast cancer diagnosis using extreme learning machine. Diagnostics, 11(2), 241. https://doi.org/10.3390/diagnostics11020241
  Google Scholar

Lee, C. N., Dominik, R., Levin, C. A., Barry, M. J., Cosenza, C., O’Connor, A. M., Mulley, A. G., & Sepucha, K. R. (2010). Development of instruments to measure the quality of breast cancer treatment decisions. Health Expectations: An International Journal of Public Participation in Health Care and Health Policy, 13(3), 258–272. https://doi.org/10.1111/j.1369-7625.2010.00600.x
  Google Scholar

Li, Y., Li, Z., Zhang, K., Dan, R., Jiang, S., & Zhang, Y. (2023). ChatDoctor: A medical chat model fine-tuned on a large language model Meta-AI (LLaMA) using medical domain knowledge. Cureus, 15(6), e40895. https://doi.org/10.7759/cureus.40895
  Google Scholar

Machrowska, A., Karpiński, R., Maciejewski, M., Jonak, J., & Krakowski, P. (2024). Application of EEMD-DFA algorithms and ANN classification for detection of knee osteoarthritis using vibroarthrography. Applied Computer Science, 20(2), 90–108. https://doi.org/10.35784/acs-2024-18
  Google Scholar

Mazur, D. J., & Hickam, D. H. (1993). Patient interpretations of terms connoting low probabilities when communicating about surgical risk. Theoretical Surgery, 8, 143–145.
  Google Scholar

McAlister, F. A., Straus, S. E., Guyatt, G. H., & Haynes, R. B. (2000). Users’ guides to the medical literature: XX. Integrating research evidence with the care of the individual patient. JAMA, 283(21), 2829–2836. https://doi.org/10.1001/jama.283.21.2829
  Google Scholar

Mihalache, A., Huang, R. S., Popovic, M. M., Patil, N. S., Pandya, B. U., Shor, R., Pereira, A., Kwok, J. M., Yan, P., Wong, D. T., Kertes, P. J., & Muni, R. H. (2024). Accuracy of an artificial intelligence chatbot’s interpretation of clinical ophthalmic images. JAMA Ophthalmology, 142(4), 321–326. https://doi.org/10.1001/jamaophthalmol.2024.0017
  Google Scholar

Mongeon, P., & Paul-Hus, A. (2016). The journal coverage of Web of Science and Scopus: A comparative analysis. Scientometrics, 106, 213–228. https://doi.org/10.1007/s11192-015-1765-5
  Google Scholar

Murugesan, M., Kaliannan, K., Balraj, S., Singaram, K., Kaliannan, T., & Albert, J. R. (2022). A hybrid deep learning model for effective segmentation and classification of lung nodules from CT images. Journal of Intelligent & Fuzzy Systems, 42(3), 2667–2679. https://doi.org/10.3233/JIFS-212189
  Google Scholar

Musa, I. H. (2021). Artificial intelligence and machine learning in oncology: Historical overview of documents indexed in the Web of Science database. Eurasian Journal of Medicine and Oncology. https://doi.org/10.14744/ejmo.2021.24856
  Google Scholar

Nair, A. B., K., A., U., A., Jaison, D. T., V., A., & Anoop, V. S. (2024). “Hey..! This medicine made me sick”: Sentiment Analysis of User-Generated Drug Reviews using Machine Learning Techniques. ArXiv, abs/2404.13057. https://doi.org/10.48550/ARXIV.2404.13057
  Google Scholar

Pang, Q., Hu, H., Zhang, H., Qiao, B., & Ma, L. (2022). Temperature-responsive ionic conductive hydrogel for strain and temperature sensors. ACS Applied Materials & Interfaces, 14(23), 26536–26547. https://doi.org/10.1021/acsami.2c06952
  Google Scholar

Redelmeier, D. A., Rozin, P., & Kahneman, D. (1993). Understanding patients’ decisions. Cognitive and emotional perspectives. JAMA, 270(1), 72–76. https://doi.org/10.1001/jama.1993.03510010078034
  Google Scholar

Reyna, V. F., Nelson, W. L., Han, P. K., & Pignone, M. P. (2015). Decision making and cancer. The American Psychologist, 70(2), 105–118. https://doi.org/10.1037/a0036834
  Google Scholar

Sarma, K., Harmon, S., Sanford, T., Roth, H., Xu, Z., Tetreault, J., Xu, D., Flores, M., Raman, A., Kulkarni, R., Wood, B., Choyke, P., Priester, A., Marks, L., Raman, S., Enzmann, D., Turkbey, B., Speier, W., & Arnold, C. (2021). Federated learning improves site performance in multicenter deep learning without data sharing. Journal of the American Medical Informatics Association, 28(6), 1259–1264. https://doi.org/10.1093/jamia/ocaa341
  Google Scholar

Schukow, C., Smith, S. C., Landgrebe, E., Parasuraman, S., Folaranmi, O. O., Paner, G. P., & Amin, M. B. (2024). Application of ChatGPT in routine diagnostic pathology: Promises, pitfalls, and potential future directions. Advances in Anatomic Pathology, 31(1), 15–21. https://doi.org/10.1097/PAP.0000000000000406
  Google Scholar

Sekhar, A., Biswas, S., Hazra, R., Sunaniya, A. K., Mukherjee, A., & Yang, L. (2022). Brain tumor classification using fine-tuned GoogLeNet features and machine learning algorithms: IoMT enabled CAD system. IEEE Journal of Biomedical and Health Informatics, 26(3), 983–991. https://doi.org/10.1109/JBHI.2021.3100758
  Google Scholar

Seyhan, A. A., & Carini, C. (2019). Are innovation and new technologies in precision medicine paving a new era in patients centric care? Journal of Translational Medicine, 17(1), 114. https://doi.org/10.1186/s12967-019-1864-9
  Google Scholar

Sidaoui, B. (2024). Predicting states of epilepsy patients using deep learning models. Applied Computer Science, 20(2), 109–125. https://doi.org/10.35784/acs-2024-19
  Google Scholar

Teymourian, H., Parrilla, M., Sempionatto, J. R., Montiel, N. F., Barfidokht, A., Van Echelpoel, R., De Wael, K., & Wang, J. (2020). Wearable electrochemical sensors for the monitoring and screening of drugs. ACS Sensors, 5(9), 2679–2700. https://doi.org/10.1021/acssensors.0c01318
  Google Scholar

Tian, Q., Price, N. D., & Hood, L. (2012). Systems cancer medicine: Towards realization of predictive, preventive, personalized and participatory (P4) medicine. Journal of Internal Medicine, 271(2), 111–121. https://doi.org/10.1111/j.1365-2796.2011.02498.x
  Google Scholar

Truhn, D., Loeffler, C. M. L., Mueller-Franzes, G., Nebelung, S., Hewitt, K. J., Brandner, S., Bressem, K. K., Foersch, S., & Kather, J. N. (2024). Extracting structured information from unstructured histopathology reports using generative pre-trained transformer 4 (GPT-4). Journal of Pathology, 262(3), 310–319. https://doi.org/10.1002/path.6232
  Google Scholar

Wu, T., Duan, Y., Zhang, T., Tian, W., Liu, H., & Deng, Y. (2022). Research trends in the application of artificial intelligence in oncology: A bibliometric and network visualization study. Frontiers in Bioscience-Landmark, 27(9), 254. https://doi.org/10.31083/j.fbl2709254
  Google Scholar

Younis, M. C. (2024). Prediction of patient’s willingness for treatment of mental illness using machine learning approaches. Applied Computer Science, 20(2), 175–193. https://doi.org/10.35784/acs-2024-23
  Google Scholar

Download


Published
2025-03-31

Cited by

EL HABTI, W., & AZMANI, A. (2025). Harnessing multi-source data for AI-driven oncology insights: Productivity, trend, and sentiment analysis. Applied Computer Science, 21(1), 70–82. https://doi.org/10.35784/acs_6670

Authors

Wissal EL HABTI 
wissal.elhabti@etu.uae.ac.ma
Abdelmalek Essaadi University, Faculty of Science and Technologies, Intelligent Automation and BioMedGenomics laboratory Morocco
https://orcid.org/0009-0009-4916-3058

Authors

Abdellah AZMANI 

Abdelmalek Essaadi University Morocco
https://orcid.org/0000-0003-4975-3807

Statistics

Abstract views: 11
PDF downloads: 6


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.