Harnessing multi-source data for AI-driven oncology insights: Productivity, trend, and sentiment analysis
Wissal EL HABTI
wissal.elhabti@etu.uae.ac.maAbdelmalek Essaadi University, Faculty of Science and Technologies, Intelligent Automation and BioMedGenomics laboratory (Morocco)
https://orcid.org/0009-0009-4916-3058
Abdellah AZMANI
Abdelmalek Essaadi University (Morocco)
https://orcid.org/0000-0003-4975-3807
Abstract
This study aims to provide an overall view of the current status of AI publications in the entire field of oncology, encompassing productivity, emerging trends, and researchers’ sentiments. A total of 1,296 papers published between January 2019 and January 2024, were selected using the PRISMA framework. Citespace software and the R package “Biblioshiny” were utilized for bibliographic analysis. China has been the leading contributor to global production with over 2,596 publications, followed by Europe. Among 8339 authors, Kather JN was the third most prolific author and held a central position in the co-authorship network. The most prominent article emphasized the Explainability of AI methods (XAI) with a profound discussion of their potential implications and privacy in data fusion contexts. Current trends involve the utilization of supervised learning methods such as CNN, Bayesian networks, and extreme learning machines for various cancers, particularly breast, lung, brain, and skin cancer. Late image-omics fusion was the focus of various studies during 2023. Recent advancements include the use of "conductive hydrogels" and "carbon nanotubes" for flexible electronic sensors. Ninety and a half percent of the researchers viewed these advancements positively. To our knowledge, this study is the first in the field to utilize merged databases from WoS, Scopus, and PubMed. Supervised ML methods, Multimodal DL, chatbots, and intelligent wearable devices have garnered significant interest from the scientific community. However, issues related to data-sharing and the generalizability of AI algorithms are still prevalent.
Supporting Agencies
Keywords:
oncology, bibliometric analysis, AI, multimodal learning, chatbots, wearablesReferences
Ahnen, D. J., Wade, S. W., Jones, W. F., Sifri, R., Mendoza Silveiras, J., Greenamyer, J., Guiffre, S., Axilbund, J., Spiegel, A., & You, Y. N. (2014). The increasing incidence of young-onset colorectal cancer: A call to action. Mayo Clinic Proceedings, 89(2), 216–224. https://doi.org/10.1016/j.mayocp.2013.09.006
Google Scholar
Ao, J., Shao, X., Liu, Z., Liu, Q., Xia, J., Shi, Y., Qi, L., Pan, J., & Ji, M. (2023). Stimulated raman scattering microscopy enables gleason scoring of prostate core needle biopsy by a Convolutional Neural Network. Cancer Research, 83(4), 641–651. https://doi.org/10.1158/0008-5472.CAN-22-2146
Google Scholar
Beltagy, I., Lo, K., & Cohan, A. (2019). SciBERT: A pretrained language model for scientific text. 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) (pp. 3613–3618). Association for Computational Linguistics. https://doi.org/10.18653/v1/D19-1371
Google Scholar
Belugina, R., Karpushchenko, E., Sleptsov, A., Protoshchak, V., Legin, A., & Kirsanov, D. (2021). Developing non-invasive bladder cancer screening methodology through potentiometric multisensor urine analysis. Talanta, 234, 122696. https://doi.org/10.1016/j.talanta.2021.122696
Google Scholar
Boehm, K. M., Khosravi, P., Vanguri, R., Gao, J., & Shah, S. P. (2022). Harnessing multimodal data integration to advance precision oncology. Nature Reviews Cancer, 22, 114–126. https://doi.org/10.1038/s41568-021-00408-3
Google Scholar
Chen, Q., Li, M., Chen, C., Zhou, P., Lv, X., & Chen, C. (2023). MDFNet: Application of multimodal fusion method based on skin image and clinical data to skin cancer classification. Journal of Cancer Research and Clinical Oncology, 149, 3287–3299. https://doi.org/10.1007/s00432-022-04180-1
Google Scholar
Chen, R. J., Lu, M. Y., Williamson, D. F. K., Chen, T. Y., Lipkova, J., Noor, Z., Shaban, M., Shady, M., Williams, M., Joo, B., & Mahmood, F. (2022). Pan-cancer integrative histology-genomic analysis via multimodal deep learning. CANCER CELL, 40(8), 865-878. https://doi.org/10.1016/j.ccell.2022.07.004
Google Scholar
Cuadra, A., Breuch, J., Estrada, S., Ihim, D., Hung, I., Askaryar, D., Hassanien, M., Fessele, K. L., & Landay, J. A. (2024). Digital forms for all: A holistic multimodal large language model agent for health data entry. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 8(2), 1–39. https://doi.org/10.1145/3659624
Google Scholar
Davis, R. J., Ayo‐Ajibola, O., Lin, M. E., Swanson, M. S., Chambers, T. N., Kwon, D. I., & Kokot, N. C. (2024). Evaluation of oropharyngeal cancer information from revolutionary artificial intelligence chatbot. The Laryngoscope, 134(5), 2252–2257. https://doi.org/10.1002/lary.31191
Google Scholar
Ding, S., Huang, H., Li, Z., Liu, X., & Yang, S. (2021). SCNET: A novel UGI cancer screening framework based on semantic-level multimodal data fusion. IEEE Journal of Biomedical and Health Informatics, 25(1), 143–151. https://doi.org/10.1109/JBHI.2020.2983126
Google Scholar
Du, Y., Wang, D., Liu, M., Zhang, X., Ren, W., Sun, J., Yin, C., Yang, S., & Zhang, L. (2024). Study on the differential diagnosis of benign and malignant breast lesions using a deep learning model based on multimodal images. Journal of Cancer Research and Therapeutics, 20(2), 625–632.. https://doi.org/10.4103/jcrt.jcrt_1796_23
Google Scholar
Farina, E., Nabhen, J. J., Dacoregio, M. I., Batalini, F., & Moraes, F. Y. (2022). An overview of artificial intelligence in oncology. Future Science OA, 8(4), FSO787. https://doi.org/10.2144/fsoa-2021-0074
Google Scholar
Guo, W., Liang, W., Deng, Q., & Zou, X. (2021). A multimodal affinity fusion network for predicting the survival of breast cancer patients. Frontiers in Genetics, 12, 709027. https://doi.org/10.3389/fgene.2021.709027
Google Scholar
Hajdu, S. I. (2016). Pathfinders in oncology from ancient times to the end of the Middle Ages. Cancer, 122(11), 1638–1646. https://doi.org/10.1002/cncr.29955
Google Scholar
Hood, L., & Friend, S. H. (2011). Predictive, personalized, preventive, participatory (P4) cancer medicine. Nature Reviews. Clinical Oncology, 8(3), 184–187. https://doi.org/10.1038/nrclinonc.2010.227
Google Scholar
Horiuchi, D., Tatekawa, H., Shimono, T., Walston, S. L., Takita, H., Matsushita, S., Oura, T., Mitsuyama, Y., Miki, Y., & Ueda, D. (2024). Accuracy of ChatGPT generated diagnosis from patient’s medical history and imaging findings in neuroradiology cases. Neuroradiology, 66, 73–79. https://doi.org/10.1007/s00234-023-03252-4
Google Scholar
Huang, H., Zheng, D., Chen, H., Wang, Y., Chen, C., Xu, L., Li, G., Wang, Y., He, X., & Li, W. (2022). Fusion of CT images and clinical variables based on deep learning for predicting invasiveness risk of stage I lung adenocarcinoma. Medical Physics, 49(10), 6384–6394. https://doi.org/10.1002/mp.15903
Google Scholar
Huang, S.-C., Pareek, A., Seyyedi, S., Banerjee, I., & Lungren, M. P. (2020). Fusion of medical imaging and electronic health records using deep learning: A systematic review and implementation guidelines. Npj Digital Medicine, 3, 136. https://doi.org/10.1038/s41746-020-00341-z
Google Scholar
Iannantuono, G. M., Bracken-Clarke, D., Karzai, F., Choo-Wosoba, H., Gulley, J. L., & Floudas, C. S. (2024). Comparison of large language models in answering immuno-oncology questions: A cross-sectional study. The Oncologist, 29(5), 407–414. https://doi.org/10.1093/oncolo/oyae009
Google Scholar
Jha, D., Smedsrud, P., Johansen, D., de Lange, T., Johansen, H., Halvorsen, P., & Riegler, M. (2021). A comprehensive study on colorectal polyp segmentation with ResUNet plus plus, conditional random field and test-time augmentation. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 25(6), 2029–2040. https://doi.org/10.1109/JBHI.2021.3049304
Google Scholar
Karger, E., & Kureljusic, M. (2023). Artificial intelligence for cancer detection—A bibliometric analysis and avenues for future research. Current Oncology, 30(2), 1626–1647. https://doi.org/10.3390/curroncol30020125
Google Scholar
Karpiński, R., Krakowski, P., Jonak, J., Machrowska, A., & Maciejewski, M. (2023). Comparison of selected classification methods based on machine learning as a diagnostic tool for knee joint cartilage damage based on generated vibroacoustic processes. Applied Computer Science, 19(4), 136–150. https://doi.org/10.35784/acs-2023-40
Google Scholar
Kather, J. N., Heij, L. R., Grabsch, H. I., Loeffler, C., Echle, A., Muti, H. S., Krause, J., Niehues, J. M., Sommer, K. A. J., Bankhead, P., Kooreman, L. F. S., Schulte, J. J., Cipriani, N. A., Buelow, R. D., Boor, P., Ortiz-Bruechle, N., Hanby, A. M., Speirs, V., Kochanny, S., … Luedde, T. (2020). Pan-cancer image-based detection of clinically actionable genetic alterations. Nature Cancer, 1, 789-799. https://doi.org/10.1038/s43018-020-0087-6
Google Scholar
Koçak, M., & Akçalı, Z. (2024). Development trends and knowledge framework of artificial intelligence (AI) applications in oncology by years: A bibliometric analysis from 1992 to 2022. https://doi.org/10.21203/rs.3.rs-4260599/v1
Google Scholar
Kuşcu, O., Pamuk, A. E., Sütay Süslü, N., & Hosal, S. (2023). Is ChatGPT accurate and reliable in answering questions regarding head and neck cancer? Frontiers in Oncology, 13, 1256459. https://doi.org/10.3389/fonc.2023.1256459
Google Scholar
Lahoura, V., Singh, H., Aggarwal, A., Sharma, B., Mohammed, M. A., Damaševičius, R., Kadry, S., & Cengiz, K. (2021). Cloud computing-based framework for breast cancer diagnosis using extreme learning machine. Diagnostics, 11(2), 241. https://doi.org/10.3390/diagnostics11020241
Google Scholar
Lee, C. N., Dominik, R., Levin, C. A., Barry, M. J., Cosenza, C., O’Connor, A. M., Mulley, A. G., & Sepucha, K. R. (2010). Development of instruments to measure the quality of breast cancer treatment decisions. Health Expectations: An International Journal of Public Participation in Health Care and Health Policy, 13(3), 258–272. https://doi.org/10.1111/j.1369-7625.2010.00600.x
Google Scholar
Li, Y., Li, Z., Zhang, K., Dan, R., Jiang, S., & Zhang, Y. (2023). ChatDoctor: A medical chat model fine-tuned on a large language model Meta-AI (LLaMA) using medical domain knowledge. Cureus, 15(6), e40895. https://doi.org/10.7759/cureus.40895
Google Scholar
Machrowska, A., Karpiński, R., Maciejewski, M., Jonak, J., & Krakowski, P. (2024). Application of EEMD-DFA algorithms and ANN classification for detection of knee osteoarthritis using vibroarthrography. Applied Computer Science, 20(2), 90–108. https://doi.org/10.35784/acs-2024-18
Google Scholar
Mazur, D. J., & Hickam, D. H. (1993). Patient interpretations of terms connoting low probabilities when communicating about surgical risk. Theoretical Surgery, 8, 143–145.
Google Scholar
McAlister, F. A., Straus, S. E., Guyatt, G. H., & Haynes, R. B. (2000). Users’ guides to the medical literature: XX. Integrating research evidence with the care of the individual patient. JAMA, 283(21), 2829–2836. https://doi.org/10.1001/jama.283.21.2829
Google Scholar
Mihalache, A., Huang, R. S., Popovic, M. M., Patil, N. S., Pandya, B. U., Shor, R., Pereira, A., Kwok, J. M., Yan, P., Wong, D. T., Kertes, P. J., & Muni, R. H. (2024). Accuracy of an artificial intelligence chatbot’s interpretation of clinical ophthalmic images. JAMA Ophthalmology, 142(4), 321–326. https://doi.org/10.1001/jamaophthalmol.2024.0017
Google Scholar
Mongeon, P., & Paul-Hus, A. (2016). The journal coverage of Web of Science and Scopus: A comparative analysis. Scientometrics, 106, 213–228. https://doi.org/10.1007/s11192-015-1765-5
Google Scholar
Murugesan, M., Kaliannan, K., Balraj, S., Singaram, K., Kaliannan, T., & Albert, J. R. (2022). A hybrid deep learning model for effective segmentation and classification of lung nodules from CT images. Journal of Intelligent & Fuzzy Systems, 42(3), 2667–2679. https://doi.org/10.3233/JIFS-212189
Google Scholar
Musa, I. H. (2021). Artificial intelligence and machine learning in oncology: Historical overview of documents indexed in the Web of Science database. Eurasian Journal of Medicine and Oncology. https://doi.org/10.14744/ejmo.2021.24856
Google Scholar
Nair, A. B., K., A., U., A., Jaison, D. T., V., A., & Anoop, V. S. (2024). “Hey..! This medicine made me sick”: Sentiment Analysis of User-Generated Drug Reviews using Machine Learning Techniques. ArXiv, abs/2404.13057. https://doi.org/10.48550/ARXIV.2404.13057
Google Scholar
Pang, Q., Hu, H., Zhang, H., Qiao, B., & Ma, L. (2022). Temperature-responsive ionic conductive hydrogel for strain and temperature sensors. ACS Applied Materials & Interfaces, 14(23), 26536–26547. https://doi.org/10.1021/acsami.2c06952
Google Scholar
Redelmeier, D. A., Rozin, P., & Kahneman, D. (1993). Understanding patients’ decisions. Cognitive and emotional perspectives. JAMA, 270(1), 72–76. https://doi.org/10.1001/jama.1993.03510010078034
Google Scholar
Reyna, V. F., Nelson, W. L., Han, P. K., & Pignone, M. P. (2015). Decision making and cancer. The American Psychologist, 70(2), 105–118. https://doi.org/10.1037/a0036834
Google Scholar
Sarma, K., Harmon, S., Sanford, T., Roth, H., Xu, Z., Tetreault, J., Xu, D., Flores, M., Raman, A., Kulkarni, R., Wood, B., Choyke, P., Priester, A., Marks, L., Raman, S., Enzmann, D., Turkbey, B., Speier, W., & Arnold, C. (2021). Federated learning improves site performance in multicenter deep learning without data sharing. Journal of the American Medical Informatics Association, 28(6), 1259–1264. https://doi.org/10.1093/jamia/ocaa341
Google Scholar
Schukow, C., Smith, S. C., Landgrebe, E., Parasuraman, S., Folaranmi, O. O., Paner, G. P., & Amin, M. B. (2024). Application of ChatGPT in routine diagnostic pathology: Promises, pitfalls, and potential future directions. Advances in Anatomic Pathology, 31(1), 15–21. https://doi.org/10.1097/PAP.0000000000000406
Google Scholar
Sekhar, A., Biswas, S., Hazra, R., Sunaniya, A. K., Mukherjee, A., & Yang, L. (2022). Brain tumor classification using fine-tuned GoogLeNet features and machine learning algorithms: IoMT enabled CAD system. IEEE Journal of Biomedical and Health Informatics, 26(3), 983–991. https://doi.org/10.1109/JBHI.2021.3100758
Google Scholar
Seyhan, A. A., & Carini, C. (2019). Are innovation and new technologies in precision medicine paving a new era in patients centric care? Journal of Translational Medicine, 17(1), 114. https://doi.org/10.1186/s12967-019-1864-9
Google Scholar
Sidaoui, B. (2024). Predicting states of epilepsy patients using deep learning models. Applied Computer Science, 20(2), 109–125. https://doi.org/10.35784/acs-2024-19
Google Scholar
Teymourian, H., Parrilla, M., Sempionatto, J. R., Montiel, N. F., Barfidokht, A., Van Echelpoel, R., De Wael, K., & Wang, J. (2020). Wearable electrochemical sensors for the monitoring and screening of drugs. ACS Sensors, 5(9), 2679–2700. https://doi.org/10.1021/acssensors.0c01318
Google Scholar
Tian, Q., Price, N. D., & Hood, L. (2012). Systems cancer medicine: Towards realization of predictive, preventive, personalized and participatory (P4) medicine. Journal of Internal Medicine, 271(2), 111–121. https://doi.org/10.1111/j.1365-2796.2011.02498.x
Google Scholar
Truhn, D., Loeffler, C. M. L., Mueller-Franzes, G., Nebelung, S., Hewitt, K. J., Brandner, S., Bressem, K. K., Foersch, S., & Kather, J. N. (2024). Extracting structured information from unstructured histopathology reports using generative pre-trained transformer 4 (GPT-4). Journal of Pathology, 262(3), 310–319. https://doi.org/10.1002/path.6232
Google Scholar
Wu, T., Duan, Y., Zhang, T., Tian, W., Liu, H., & Deng, Y. (2022). Research trends in the application of artificial intelligence in oncology: A bibliometric and network visualization study. Frontiers in Bioscience-Landmark, 27(9), 254. https://doi.org/10.31083/j.fbl2709254
Google Scholar
Younis, M. C. (2024). Prediction of patient’s willingness for treatment of mental illness using machine learning approaches. Applied Computer Science, 20(2), 175–193. https://doi.org/10.35784/acs-2024-23
Google Scholar
Authors
Wissal EL HABTIwissal.elhabti@etu.uae.ac.ma
Abdelmalek Essaadi University, Faculty of Science and Technologies, Intelligent Automation and BioMedGenomics laboratory Morocco
https://orcid.org/0009-0009-4916-3058
Statistics
Abstract views: 11PDF downloads: 6
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
Most read articles by the same author(s)
- Loubna BOUHSAIEN, Abdellah AZMANI, THE POTENTIAL OF ARTIFICIAL INTELLIGENCE IN HUMAN RESOURCE MANAGEMENT , Applied Computer Science: Vol. 20 No. 3 (2024)
- Donalson WILSON, Abdellah AZMANI, The evolution and impact of artificial intelligence in market analysis: A quantitative bibliometric exploration of the past thirty-five (35) years , Applied Computer Science: Vol. 21 No. 1 (2025)
Similar Articles
- Donalson WILSON, Abdellah AZMANI, The evolution and impact of artificial intelligence in market analysis: A quantitative bibliometric exploration of the past thirty-five (35) years , Applied Computer Science: Vol. 21 No. 1 (2025)
- Islam MOHAMED, Mohamed EL-WAKAD, Khaled ABBAS, Mohamed ABOAMER, Nader A. Rahman MOHAMED, PUPIL DIAMETER AND MACHINE LEARNING FOR DEPRESSION DETECTION: A COMPARATIVE STUDY WITH DEEP LEARNING MODELS , Applied Computer Science: Vol. 20 No. 4 (2024)
- Nataliya SHABLIY, Serhii LUPENKO, Nadiia LUTSYK, Oleh YASNIY, Olha MALYSHEVSKA, KEYSTROKE DYNAMICS ANALYSIS USING MACHINE LEARNING METHODS , Applied Computer Science: Vol. 17 No. 4 (2021)
- Amina KINANE DAOUADJI, Fatima BENDELLA, IMPROVING E-LEARNING BY FACIAL EXPRESSION ANALYSIS , Applied Computer Science: Vol. 20 No. 2 (2024)
- Roman GALAGAN, Serhiy ANDREIEV, Nataliia STELMAKH, Yaroslava RAFALSKA, Andrii MOMOT, AUTOMATION OF POLYCYSTIC OVARY SYNDROME DIAGNOSTICS THROUGH MACHINE LEARNING ALGORITHMS IN ULTRASOUND IMAGING , Applied Computer Science: Vol. 20 No. 2 (2024)
- Hawkar ASAAD, Shavan ASKAR, Ahmed KAKAMIN, Nayla FAIQ, EXPLORING THE IMPACT OF ARTIFICIAL INTELLIGENCE ON HUMANROBOT COOPERATION IN THE CONTEXT OF INDUSTRY 4.0 , Applied Computer Science: Vol. 20 No. 2 (2024)
- Olutayo BOYINBODE, Paul OLOTU, Kolawole AKINTOLA, DEVELOPMENT OF AN ONTOLOGY-BASED ADAPTIVE PERSONALIZED E-LEARNING SYSTEM , Applied Computer Science: Vol. 16 No. 4 (2020)
- Eduardo Sánchez-García, Javier Martínez-Falcó, Bartolomé Marco-Lajara, Jolanta Słoniec, ANALYZING THE ROLE OF COMPUTER SCIENCE IN SHAPING MODERN ECONOMIC AND MANAGEMENT PRACTICES. BIBLIOMETRIC ANALYSIS , Applied Computer Science: Vol. 20 No. 1 (2024)
- Shahil SHARMA, Rajnesh LAL, Bimal KUMAR, DEVELOPING MACHINE LEARNING APPLICATION FOR EARLY CARDIOVASCULAR DISEASE (CVD) RISK DETECTION IN FIJI: A DESIGN SCIENCE APPROACH , Applied Computer Science: Vol. 20 No. 3 (2024)
- Paweł PIEŚKO, Magdalena ZAWADA-MICHAŁOWSKA, USEFULNESS OF MODAL ANALYSIS FOR EVALUATION OF MILLING PROCESS STABILITY , Applied Computer Science: Vol. 13 No. 1 (2017)
You may also start an advanced similarity search for this article.