DATA ENGINEERING IN CRISP-DM PROCESS PRODUCTION DATA – CASE STUDY
Jolanta BRZOZOWSKA
d562@pollub.edu.pl(Poland)
Jakub PIZOŃ
(Poland)
https://orcid.org/0000-0002-0806-6771
Gulzhan BAYTIKENOVA
(Kazakhstan)
Arkadiusz GOLA
(Poland)
Alfiya ZAKIMOVA
(Kazakhstan)
https://orcid.org/0000-0003-0413-0542
Katarzyna PIOTROWSKA
Lublin University of Technology, Faculty of Mechanical Engineering, Department of Production Computerisation and Robotisation (Poland)
Abstract
The paper describes one of the methods of data acquisition in data mining models used to support decision-making. The study presents the possibilities of data collection using the phases of the CRISP-DM model for an organization and presents the possibility of adapting the model for analysis and management in the decisionmaking process. The first three phases of implementing the CRISP-DM model are described using data from an enterprise with small batch production as an example. The paper presents the CRISP-DM based model for data mining in the process of predicting assembly cycle time. The developed solution has been evaluated using real industrial data and will be a part of methodology that allows to estimate the assembly time of a finished product at the quotation stage, i.e., without the detailed technology of the product being known.
Keywords:
data engineering, data mining, CRISP-DM, assembly, process planningReferences
Ayele, W.Y. (2020). Adapting CRISP-DM for idea mining a data mining process for generating ideas using a textual dataset. International Journal of Advanced Computer Science and Applications, 11,(6), 20–32. https://doi.org/10.14569/IJACSA.2020.0110603
DOI: https://doi.org/10.14569/IJACSA.2020.0110603
Google Scholar
Brzozowska, J., Gola, A. (2021). Computer aided assembly planning using MS Excel software – a case study. Applied Computer Science, 17(2), 70-89. https://doi.org/10.23743/acs-2021-14
DOI: https://doi.org/10.35784/acs-2021-14
Google Scholar
Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., and Wirth, R. (2000). CRISP-DM 1.0. Step-by-step data mining guide. SPSS. https://maestria-datamining-2010.googlecode.com/svnhistory/r282/trunk/dmct-teorica/tp1/CRISPWP-0800.pdf
Google Scholar
Cheng, A. (2023), Evaluating Fintech insdustry’s risks: A preliminary analysis based on CRISP-DM framework. Finance Research Letters, 55(B), 103966. https://doi.org/10.1016/j.frl.2023.103966
DOI: https://doi.org/10.1016/j.frl.2023.103966
Google Scholar
Choudhary, A.K., Harding, J.A., Popplewell, K. (2006). Knowledge discovery for moderating collaborative projects. 4th IEEE International Conference on Industrial Informatics, (pp. 519–524). IEEE. https://doi.org/10.1109/INDIN.2006.275610
DOI: https://doi.org/10.1109/INDIN.2006.275610
Google Scholar
Frawley, W., Piatetsky-Shapiro, G., & Matheus, C. (1992). Knowledge Discovery in Databases: An Overview. AI Magazine, 13(2), 57. https://doi.org/10.1609/aimag.v13i3.1011
Google Scholar
Gröger, C., Niedermann, F., & Mitschang B. (2012). Data mining-driven manufacturing process optimization. World congress on engineering, 14461305.
Google Scholar
Han J., Kamber M., Pei J. (2011). Data Mining. Concepts and Techniques, Third Edition, The Morgan Kaufmann Series in Data Management Systems, San Francisco, CA. https://doi.org/10.1016/C2009-0- 61819-5
Google Scholar
Hastie, T., Tibshirani, R., Friedman, J. H. (2001). The elements of statistical learning: Data mining, inference, and prediction, Second Edition, Springer Series in Statistics, New York, NY. https://doi.org/10.1007/978-0-387-84858-7:.
Google Scholar
Huber, S., Wiemer, H., Schneider, D., Ihlenfeldt, S. (2018). DMME: Data mining methodology for engineering applications – a holistic extension to the CRISP-DM Model. Procedia CIRP, 79, 403-408, https://doi.org/10.1016/j.procir.2019.02.106
DOI: https://doi.org/10.1016/j.procir.2019.02.106
Google Scholar
Krcmar, H. (2015). Informationsmanagement. Springer Gabler, Berlin-Heidelberg.. https://doi.org/10.1007/978-3-662-45863-1
DOI: https://doi.org/10.1007/978-3-662-45863-1
Google Scholar
Laudon, K.C., Laudon J.P., & Schoder D. (2010). Wirtschaftsinformatik. Eine Einführung. Pearson Studium, München, Deutschland.
Google Scholar
Martinez-Plumed F., Contreras-Ochando, L., Ferri, C., Hernandez-Orallo, J., Kull, M., Lachiche, N., RamirezQuintana, M. J., Flach, P. (2019). CRISP-DM Twenty Years Later: From Data Mining Processes to Data Science Trajectories, IEEE Transactions on Knowledge and Data Engineering, 33(8), 3048-3061. . https://doi.org/10.1109/TKDE.2019.2962680
DOI: https://doi.org/10.1109/TKDE.2019.2962680
Google Scholar
Moutinho L., Huarng K.-H. (2015). Quantitative Modelling in Marketing and Management, World Scientific Publishing, Singapore.
DOI: https://doi.org/10.1142/9657
Google Scholar
Nisbet, R., Elder, J., Miner G. (2009). Handbook of Statistical Analysis and Data Mining Applications, Elsevier. https://doi.org/10.1016/B978-0-12-374765-5.X0001-0
DOI: https://doi.org/10.1016/B978-0-12-374765-5.X0001-0
Google Scholar
Rohanizadeh, S.S., Moghadam, M.B. (2009). A Proposed Data Mining Methodology and its Application to Industrial Procedures, Journal of Industrial Engineering, 37-50.
Google Scholar
Santos, M., Azevedo, C. (2005). Data Mining – Descoberta de Conhecimento em Bases de Dados. FCA Publisher, https://hdl.handle.net/1822/19136Schröer, C., Kruse, F., Gómez, J. C. M. (2021). A Systematic Literature Review of Applying CRISP-DM Process Model. Procedia Computer Science, 181, 526-534. https://doi.org/10.1016/j.procs.2021.01.199
DOI: https://doi.org/10.1016/j.procs.2021.01.199
Google Scholar
Shearer, C. (2000). The CRISP-DM Model: The New Blueprint for Data Mining, Journal of Data Warehousing, 5(4), 13-22.
Google Scholar
Smyth, P., Hand, D., & Mannila, H. (2001). Principles of Data Mining, The MIT Press, 026208290x.
Google Scholar
Sturm, J. (2000). Hurtownie danych. SQL Server 7.0, Przewodnik techniczny. APN PROMISE.
Google Scholar
Surma, J. (2009). Business Intelligence. Systemy wspomagania decyzji biznesowych. PWN, Warsaw.
Google Scholar
Weller, J., Roesmann, D., Eggert, S., Von Enzberg, S., Gräßler, I. &, Dumitrescu, R. (2023). Identification and prediction of standard times in machining for precision steel tubes through the usage of data analytics. Procedia CIRP, 119, 514-520. https://doi.org/10.1016/j.procir.2023.01.011
DOI: https://doi.org/10.1016/j.procir.2023.01.011
Google Scholar
Zaskórski, P., & Pałka, D. (2012). Data Mining in decision-making processes. Warsaw School of Information Technology. Scientific Journals. 143-161.
Google Scholar
Authors
Gulzhan BAYTIKENOVAKazakhstan
Authors
Arkadiusz GOLAPoland
Authors
Katarzyna PIOTROWSKALublin University of Technology, Faculty of Mechanical Engineering, Department of Production Computerisation and Robotisation Poland
Statistics
Abstract views: 767PDF downloads: 544
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
Most read articles by the same author(s)
- Jolanta Brzozowska, Arkadiusz Gola, COMPUTER AIDED ASSEMBLY PLANNING USING MS EXCEL SOFTWARE – A CASE STUDY , Applied Computer Science: Vol. 17 No. 2 (2021)
- Wojciech DANILCZUK, Arkadiusz GOLA, COMPUTER-AIDED MATERIAL DEMAND PLANNING USING ERP SYSTEMS AND BUSINESS INTELLIGENCE TECHNOLOGY , Applied Computer Science: Vol. 16 No. 3 (2020)
- Piotr WITTBRODT, Iwona ŁAPUŃKA, Gulzhan BAYTIKENOVA, Arkadiusz GOLA, Alfiya ZAKIMOVA, IDENTIFICATION OF THE IMPACT OF THE AVAILABILITY FACTOR ON THE EFFICIENCY OF PRODUCTION PROCESSES USING THE AHP AND FUZZY AHP METHODS , Applied Computer Science: Vol. 18 No. 4 (2022)
- Arkadiusz GOLA, Łukasz WIECHETEK, MODELLING AND SIMULATION OF PRODUCTION FLOW IN JOB-SHOP PRODUCTION SYSTEM WITH ENTERPRISE DYNAMICS SOFTWARE , Applied Computer Science: Vol. 13 No. 4 (2017)
Similar Articles
- Anitha Rani PALAKAYALA, Kuppusamy P, A QUALITATIVE AND QUANTITATIVE APPROACH USING MACHINE LEARNING AND NON-MOTOR SYMPTOMS FOR PARKINSON’S DISEASE CLASSIFICATION. A HIERARCHICAL STUDY , Applied Computer Science: Vol. 20 No. 3 (2024)
- Arkadiusz GOLA, Łukasz WIECHETEK, MODELLING AND SIMULATION OF PRODUCTION FLOW IN JOB-SHOP PRODUCTION SYSTEM WITH ENTERPRISE DYNAMICS SOFTWARE , Applied Computer Science: Vol. 13 No. 4 (2017)
- Alexandru Marius OBRETIN, Andreea Alina CORNEA, FILTERING STRATEGIES FOR SMARTPHONE EMITTED DIGITAL SIGNALS , Applied Computer Science: Vol. 20 No. 1 (2024)
- KK Praneeth Tellakula, Saravana Kumar R, Sanjoy Deb, A SURVEY OF AI IMAGING TECHNIQUES FOR COVID-19 DIAGNOSIS AND PROGNOSIS , Applied Computer Science: Vol. 17 No. 2 (2021)
- Dilek AYDOGAN-KILIC, Deniz Kenan KILIC, Izabela Ewa NIELSEN, EXAMINATION OF SUMMARIZED MEDICAL RECORDS FOR ICD CODE CLASSIFICATION VIA BERT , Applied Computer Science: Vol. 20 No. 2 (2024)
- Nancy WOODS, Gideon BABATUNDE, A ROBUST ENSEMBLE MODEL FOR SPOKEN LANGUAGE RECOGNITION , Applied Computer Science: Vol. 16 No. 3 (2020)
- Tomasz CHMIELEWSKI, Katarzyna ZIELIŃSKA, SURVEY OF REMOTELY CONTROLLED LABORATORIES FOR RESEARCH AND EDUCATION , Applied Computer Science: Vol. 13 No. 1 (2017)
- Damian KOLNY, Dawid KURCZYK, Józef MATUSZEK, COMPUTER SUPPORT OF ERGONOMIC ANALYSIS OF WORKING CONDITIONS AT WORKSTATIONS , Applied Computer Science: Vol. 15 No. 1 (2019)
- Paweł BAŁON, Edward REJMAN, Bartłomiej KIEŁBASA, Janusz SZOSTAK, Robert SMUSZ, NUMERICAL AND EXPERIMENTAL ANALYSIS OF THE STRENGTH OF TANKS DEDICATED TO HOT UTILITY WATER , Applied Computer Science: Vol. 14 No. 4 (2018)
- Zbigniew CZYŻ, Paweł KARPIŃSKI, Tacetdin SEVDIM, NUMERICAL ANALYSIS OF THE DRAG COEFFICIENT OF A MOTORCYCLE HELMET , Applied Computer Science: Vol. 14 No. 1 (2018)
<< < 2 3 4 5 6 7 8 9 10 11 > >>
You may also start an advanced similarity search for this article.