PUPIL DIAMETER AND MACHINE LEARNING FOR DEPRESSION DETECTION: A COMPARATIVE STUDY WITH DEEP LEARNING MODELS

Islam MOHAMED


Higher Technological Institute, Biomedical Engineering Department (Egypt)
https://orcid.org/0009-0001-4408-7190

Mohamed EL-WAKAD


Future University, Faculty of Engineering and Technology, Biomedical Engineering Department (Egypt)
https://orcid.org/0000-0003-2637-1048

Khaled ABBAS


Higher Technological Institute, Electronics and Communication Department (Egypt)
https://orcid.org/0009-0002-0913-4163

Mohamed ABOAMER


Majmaah University, College of Applied Medical Sciences, Medical Equipment Technology Department (Saudi Arabia)
https://orcid.org/0000-0002-4433-776X

Nader A. Rahman MOHAMED

nader_mohamed@hotmail.com
Misr University for Science and Technology (MUST) - Faculty of Engineering - Biomedical Engineering Department. (Egypt)
https://orcid.org/0000-0001-7680-306X

Abstract

According to the World Health Organization, the Global Mental Health Report estimated that between 251 and 310 million individuals worldwide experienced depression during the first year of the COVID-19 pandemic. Most methods for detecting depression rely on clinical diagnoses and surveys. However, the American Psychiatric Association reports that over 50% of patients do not receive appropriate treatment. This study aims to utilize machine learning and pupil diameter features to identify depression and evaluate the accuracy of these classifiers in comparison to our previous deep learning model. While limited research has explored the use of pupillary diameter as a classification tool for distinguishing between individuals with and without depression, several studies have focused on EEG signals for this purpose. The study involved 58 participants, with 29 classified as depressed and 29 as healthy. The classification was based on statistical features extracted from the Hilbert-Huang Transform. Results showed a significant improvement in average accuracy compared to the authors’ prior work, with the current study achieving 77.72% accuracy, compared to 64.78% in their previous research. Machine learning methods, particularly Bagging, outperformed deep learning models such as AlexNet when classifying data from the left and right eyes individually (90.91% vs. 78.57% for the left eye; 90.91% vs. 71.43% for the right eye). However, when combining data from both eyes, deep learning using AlexNet demonstrated superior performance (98.28% accuracy compared to 93.75% using Bagging with statistical features from both eyes). Despite the higher accuracy of deep learning, machine learning is recommended for its faster execution times.


Keywords:

Pupil Diameter (PD), Major Depressive Disorder (MDD), Machine Learning (ML), Hilbert–Huang Transform (HHT), Cross-validation (CV)

Aboamer, M. A., Azar, A. T., Mohamed, A. S. A., Bär, K.-J., Berger, S., & Wahba, K. (2014). Nonlinear features of heart rate variability in paranoid schizophrenic. Neural Computing and Applications, 25(7), 1535-1555. https://doi.org/10.1007/s00521-014-1621-1
  Google Scholar

Anas, E. M. A., Lee, S. Y., & Hasan, M. K. (2010). Sequential algorithm for life threatening cardiac pathologies detection based on mean signal strength and EMD functions. BioMedical Engineering OnLine, 9, 43. https://doi.org/10.1186/1475-925X-9-43
  Google Scholar

Benvenuto, J., Jin, Y., Casale, M., Lynch, G., & Granger, R. (2002). Identification of diagnostic evoked response potential segments in Alzheimer’s disease. Experimental Neurology, 176(2), 269-276. https://doi.org/10.1006/exnr.2002.7930
  Google Scholar

Ding, X., Yue, X., Zheng, R., Bi, C., Li, D., & Yao, G. (2019). Classifying major depression patients and healthy controls using EEG, eye tracking and galvanic skin response data. Journal of Affective Disorders, 251, 156-161. https://doi.org/10.1016/j.jad.2019.03.058
  Google Scholar

Drysdale, A. T., Grosenick, L., Downar, J., Dunlop, K., Mansouri, F., Meng, Y., Fetcho, R. N., Zebley, B., Oathes, D. J., Etkin, A., Schatzberg, A. F., Sudheimer, K., Keller, J., Mayberg, H. S., Gunning, F. M., Alexopoulos, G. S., Fox, M. D., Pascual-Leone, A., Voss, H. U., … Liston, C. (2017). Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nature Medicine, 23, 28-38. https://doi.org/10.1038/nm.4246
  Google Scholar

Gregory, J. A. (1985). Shape Preserving Spline Interpolation. NASA. Langley Research Center Computational Geometry and Computer-Aided Design.
  Google Scholar

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del Río, J. F., Wiebe, M., Peterson, P., … Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585, 357-362. https://doi.org/10.1038/s41586-020-2649-2
  Google Scholar

Huang, N. E., & Attoh-Okine, N. O. (Eds.). (2005). The Hilbert-Huang Transform in Engineering. CRC Press. https://doi.org/10.1201/9781420027532
  Google Scholar

Huang, N. E., & Shen, S. S. P. (2005). Hilbert-huang Transform And Its Applications. World Scientific. https://doi.org/10.1142/5862
  Google Scholar

Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N.-C., Tung, C. C., & Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454(1971), 903-995. https://doi.org/10.1098/rspa.1998.0193
  Google Scholar

Ismail, I., El-Wakad, M. T., Shafie, K. A., Aboamer, M. A., & Mohamed, N. A. R. (2024). Major depressive disorder: Early detection using deep learning and pupil diameter. Indonesian Journal of Electrical Engineering and Computer Science, 35(2), 916-932. https://doi.org/10.11591/ijeecs.v35.i2.pp916-932
  Google Scholar

Jones, N. P., Siegle, G. J., & Mandell, D. (2015). Motivational and emotional influences on cognitive control in depression: A pupillometry study. Cognitive, Affective, & Behavioral Neuroscience, 15, 263-275. https://doi.org/10.3758/s13415-014-0323-6
  Google Scholar

Junsheng, C., Dejie, Y., & Yu, Y. (2006). Research on the intrinsic mode function (IMF) criterion in EMD method. Mechanical Systems and Signal Processing, 20(4), 817-824. https://doi.org/10.1016/j.ymssp.2005.09.011
  Google Scholar

Kamel, M. S., & Selim, S. Z. (1994). A relaxation approach to the fuzzy clustering problem. Fuzzy Sets and Systems, 61(2), 177-188. https://doi.org/10.1016/0165-0114(94)90232-1
  Google Scholar

Kowalski, P., & Smyk, R. (2018). Review and comparison of smoothing algorithms for one-dimensional data noise reduction. 2018 International Interdisciplinary PhD Workshop (IIPhDW) (pp. 277-281). IEEE. https://doi.org/10.1109/IIPHDW.2018.8388373
  Google Scholar

Kramarić, K., Šapina, M., Garcin, M., Milas, K., Pirić, M., Brdarić, D., Lukić, G., Milas, V., & Pušeljić, S. (2019). Heart rate asymmetry as a new marker for neonatal stress. Biomedical Signal Processing and Control, 47, 219-223. https://doi.org/10.1016/j.bspc.2018.08.027
  Google Scholar

Lendasse, A., Wertz, V., & Verleysen, M. (2003). Model selection with cross-validations and bootstraps-application to time series prediction with RBFN models. In O. Kaynak, E. Alpaydin, E. Oja, & L. Xu (Eds.), Artificial Neural Networks and Neural Information Processing - ICANN/ICONIP 2003 (pp. 573-580). Springer. https://doi.org/10.1007/3-540-44989-2_68
  Google Scholar

Li, M., Cao, L., Zhai, Q., Li, P., Liu, S., Li, R., Feng, L., Wang, G., Hu, B., & Lu, S. (2020). Method of depression classification based on behavioral and physiological signals of eye movement. Wiley Online Library, 2020(1), 4174857. https://doi.org/10.1155/2020/4174857
  Google Scholar

Li, W., Ma, H., Wang, X., & Shi, D. (2014). Features Derived from Behavioral Experiments to Distinguish Mental Healthy People from Depressed People. Biomedical Engineering / 817: Robotics Applications. https://doi.org/10.2316/P.2014.818-021
  Google Scholar

Mao, J., & Jain, A. K. (1996). A self-organizing network for hyperellipsoidal clustering (HEC). IEEE Transactions on Neural Networks, 7(1), 16-29. https://doi.org/10.1109/72.478389
  Google Scholar

Newson, J. J., & Thiagarajan, T. C. (2019). EEG frequency bands in psychiatric disorders: A review of resting state studies. Frontiers in Human Neuroscience, 12. https://doi.org/10.3389/fnhum.2018.00521
  Google Scholar

Schultebraucks, K., Yadav, V., Shalev, A. Y., Bonanno, G. A., & Galatzer-Levy, I. R. (2022). Deep Learning-based classification of posttraumatic stress disorder and depression following trauma utilizing visual and auditory markers of arousal and mood. Psychological Medicine, 52(5), 957-967. https://doi.org/10.1017/S0033291720002718
  Google Scholar

Schumann, A., Kralisch, C., & Bär, K.-J. (2015). Spectral decomposition of pupillary unrest using wavelet entropy. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 6154-6157). IEEE. https://doi.org/10.1109/EMBC.2015.7319797
  Google Scholar

Selim, S. Z., & Alsultan, K. (1991). A simulated annealing algorithm for the clustering problem. Pattern Recognition, 24(10), 1003-1008. https://doi.org/10.1016/0031-3203(91)90097-O
  Google Scholar

Shen, R., Zhan, Q., Wang, Y., & Ma, H. (2021). Depression detection by analysing eye movements on emotional images. ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 7973-7977). IEEE. https://doi.org/10.1109/ICASSP39728.2021.9414663
  Google Scholar

Shen, S. S. P., Shu, T., Huang, N. E., Wu, Z., North, G. R., Karl, T. R., & Easterling, D. R. (2005). Hht analysis of the nonlinear and non-stationary annual cycle of daily surface air temperature data. Hilbert-Huang Transform and Its Applications, 5, 187-209. https://doi.org/10.1142/9789812703347_0009
  Google Scholar

Siegle, G. J., Granholm, E., Ingram, R. E., & Matt, G. E. (2001). Pupillary and reaction time measures of sustained processing of negative information in depression. Biological Psychiatry, 49(7), 624-636. https://doi.org/10.1016/S0006-3223(00)01024-6
  Google Scholar

Siegle, G. J., Steinhauer, S. R., Friedman, E. S., Thompson, W. S., & Thase, M. E. (2011). Remission prognosis for cognitive therapy for recurrent depression using the pupil: Utility and neural correlates. Biological Psychiatry, 69(8), 726-733. https://doi.org/10.1016/j.biopsych.2010.12.041
  Google Scholar

Siegle, G. J., Steinhauer, S. R., Stenger, V. A., Konecky, R., & Carter, C. S. (2003). Use of concurrent pupil dilation assessment to inform interpretation and analysis of fMRI data. NeuroImage, 20(1), 114-124. https://doi.org/10.1016/S1053-8119(03)00298-2
  Google Scholar

Skowron, K., Budzyńska, A., Wiktorczyk-Kapischke, N., Chomacka, K., Grudlewska-Buda, K., Wilk, M., Wałecka-Zacharska, E., Andrzejewska, M., & Gospodarek-Komkowska, E. (2022). The role of psychobiotics in supporting the treatment of disturbances in the functioning of the nervous system - A systematic review. International Journal of Molecular Sciences, 23(14), 7820. https://doi.org/10.3390/ijms23147820
  Google Scholar

Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information Processing & Management, 45(4), 427-437. https://doi.org/10.1016/j.ipm.2009.03.002
  Google Scholar

Suslow, T., Hußlack, A., Kersting, A., & Bodenschatz, C. M. (2020). Attentional biases to emotional information in clinical depression: A systematic and meta-analytic review of eye tracking findings. Journal of Affective Disorders, 274, 632-642. https://doi.org/10.1016/j.jad.2020.05.140
  Google Scholar

Wang, J., Fan, Y., Zhao, X., & Chen, N. (2014). Pupillometry in chinese female patients with depression: A pilot study. International Journal of Environmental Research and Public Health, 11(2), 2236-2243. https://doi.org/10.3390/ijerph110202236
  Google Scholar

World Health Organization. (2022). World mental health report: Transforming mental health for all. https://www.who.int/publications/i/item/9789240049338
  Google Scholar

Download


Published
2024-12-31

Cited by

MOHAMED, I., EL-WAKAD, M., ABBAS, K., ABOAMER, M., & MOHAMED, N. A. R. (2024). PUPIL DIAMETER AND MACHINE LEARNING FOR DEPRESSION DETECTION: A COMPARATIVE STUDY WITH DEEP LEARNING MODELS. Applied Computer Science, 20(4), 77–99. https://doi.org/10.35784/acs-2024-41

Authors

Islam MOHAMED 

Higher Technological Institute, Biomedical Engineering Department Egypt
https://orcid.org/0009-0001-4408-7190

Authors

Mohamed EL-WAKAD 

Future University, Faculty of Engineering and Technology, Biomedical Engineering Department Egypt
https://orcid.org/0000-0003-2637-1048

Authors

Khaled ABBAS 

Higher Technological Institute, Electronics and Communication Department Egypt
https://orcid.org/0009-0002-0913-4163

Authors

Mohamed ABOAMER 

Majmaah University, College of Applied Medical Sciences, Medical Equipment Technology Department Saudi Arabia
https://orcid.org/0000-0002-4433-776X

Authors

Nader A. Rahman MOHAMED 
nader_mohamed@hotmail.com
Misr University for Science and Technology (MUST) - Faculty of Engineering - Biomedical Engineering Department. Egypt
https://orcid.org/0000-0001-7680-306X

Statistics

Abstract views: 57
PDF downloads: 17


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Similar Articles

<< < 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.