Interpretable VAE-based predictive modeling for enhanced complex industrial systems dependability in developing countries
Article Sidebar
Open full text
Issue Vol. 21 No. 4 (2025)
-
Real-time detection of seat belt usage in overhead traffic surveillance using YOLOv7
Catur Edi WIDODO, Kusworo ADI, Priyono PRIYONO, Aji SETIAWAN1-12
-
SoundCrafter: Bridging text and Sound with a diffusion model
Haitham ALHAJI, Alaa Yaseen TAQA13-20
-
Application of encoder-based motion analysis and machine learning for knee osteoarthritis detection: A pilot study
Robert KARPIŃSKI, Arkadiusz SYTA21-31
-
SSAtt-SolNet: An efficient model for dusty solar panel classification with Sparse Shuffle and Attention mechanisms
An CONG TRAN, Nghi CONG TRAN32-46
-
IoT-driven environmental optimization for hydroponic lettuce: A data-centric approach to smart agriculture
Okky Putra BARUS, Ade MAULANA, Pujianto YUGOPUSPITO, Achmad Nizar HIDAYANTO, Winar Joko ALEXANDER47-58
-
Computer-Aided System with Machine Learning components for generating medical recommendations for type 1 diabetes patients
Tomasz NOWICKI59-75
-
Interpretable VAE-based predictive modeling for enhanced complex industrial systems dependability in developing countries
Richard NASSO TOUMBA, Maxime MOAMISSOAL SAMUEL, Achille EBOKE, Wangkaké TAIWE, Timothée KOMBE76-97
-
Measuring comparative eco-efficiency in the Eurasian Economic Union using MaxDEA X 12.2 software
Bella GABRIELYAN, Narek KESOYAN, Armen GHAZARYAN, Argam ARTASHYAN98-109
-
K4F-Net: Lightweight multi-view speech emotion recognition with Kronecker convolution and cross-language robustness
Paweł POWROŹNIK, Maria SKUBLEWSKA-PASZKOWSKA110-126
-
The modelling of NiTi shape memory alloy functional properties by machine learning methods
Volodymyr HUTSAYLYUK, Vladyslav DEMCHYK, Oleh YASNIY, Nadiia LUTSYK, Andrii FIIALKA127-135
-
Application of machine learning algorithms for forecasting labour demand in the metallurgical industry of the east Kazakhstan region
Oxana DENISSOVA, Aman ISMUKHAMEDOV, Zhadyra KONURBAYEVA, Saule RAKHMETULLINA, Yelena SAMUSSENKO, Monika KULISZ136-158
-
Evaluating the impact of residual learning and feature fusion on soil moisture prediction accuracy
Pascal YAMAKILI, Mrindoko Rashid NICHOLAUS, Kenedy Aliila GREYSON159-168
Archives
-
Vol. 21 No. 4
2025-12-31 12
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2026-01-08 8
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
Main Article Content
DOI
Authors
Abstract
Rapid industrial growth in developing countries requires robust maintenance, and predictive maintenance (PdM) is a key solution to minimize downtime and costs. However, complex industrial systems and the acute scarcity of tagged data, particularly in African contexts, pose significant implementation challenges for traditional PdM approaches. This research proposes a novel predictive maintenance approach using a Variational Autoencoder (VAE) specifically designed to address data scarcity and improve interpretability in complex industrial systems in developing countries. The VAE is trained on real operational data and learns complex system patterns. Its interpretability is a key feature, achieved through visualization and analysis of latent space, providing deeper insight into system behavior. The VAE model demonstrates strong and consistent performance in anomaly detection and data reconstruction, as evidenced by low Mean Squared Error (MSE) and favorable R² values, and is rigorously validated through cross-validation, confirming its robustness and generalizability. This underscores its ability to accurately model complex system dynamics across diverse data subsets. This interpretable VAE model offers a powerful and promising predictive maintenance solution for improving the reliability of complex industrial systems in developing countries. By enabling early anomaly detection, synthetic data generation, and improved decision making, this approach has the potential to significantly contribute to the growth and sustainability of industries in these regions through reduced downtime and optimized resource utilization.
Keywords:
References
Abouelyazid, M. (2023). Advanced artificial intelligence techniques for real-time predictive maintenance in industrial IoT systems: A comprehensive analysis and framework. Journal of AI-Assisted Scientific Discovery, 3(1), 271-313.
Akkem, Y., Biswas, S. K., & Varanasi, A. (2024). A comprehensive review of synthetic data generation in smart farming by using variational autoencoder and generative adversarial network. Engineering Applications of Artificial Intelligence, 131, 107881. https://doi.org/10.1016/j.engappai.2024.107881
Angiulli, F., Fassetti, F., & Ferragina, L. (2020). Improving deep unsupervised anomaly detection by exploiting VAE latent space distribution. International Conference on Discovery Science (pp. 596-611). Springer International Publishing. https://doi.org/10.1007/978-3-030-61527-7_39
Baroud, S. Y., Yahaya, N. A., & Elzamly, A. M. (2024). Cutting-edge AI approaches with MAS for PdM in Industry 4.0: Challenges and future directions. Journal of Applied Data Sciences, 5(2), 455-473. https://doi.org/10.47738/jads.v5i2.196
Carratù, M., Gallo, V., Iacono, S. D., Sommella, P., Bartolini, A., Grasso, F., Ciani, L., & Patrizi, G. (2023). A novel methodology for unsupervised anomaly detection in industrial electrical systems. IEEE Transactions on Instrumentation and Measurement, 72, 1-12. https://doi.org/10.1109/TIM.2023.3318684
Chen, C., Fu, H., Zheng, Y., Tao, F., & Liu, Y. (2023). The advance of digital twin for predictive maintenance: The role and function of machine learning. Journal of Manufacturing Systems, 71, 581-594. https://doi.org/10.1016/j.jmsy.2023.10.010
Costa, N., & Sánchez, L. (2022). Variational encoding approach for interpretable assessment of remaining useful life estimation. Reliability Engineering & System Safety, 222, 108353. https://doi.org/10.1016/j.ress.2022.108353
Dalhatu, A. A., Sa’ad, A. M., Cabral de Azevedo, R., & De Tomi, G. (2023). Remotely operated vehicle taxonomy and emerging methods of inspection, maintenance, and repair operations: An overview and outlook. Journal of Offshore Mechanics and Arctic Engineering, 145(2), 020801. https://doi.org/10.1115/1.4055476
Daoudi, N., Smail, Z., & Aboussaleh, M. (2023). Machine learning based predictive maintenance: Review, challenges and workflow. International Conference on Artificial Intelligence & Industrial Applications (pp. 71-88). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-43524-9_6
Dayo-Olupona, O., Genc, B., Celik, T., & Bada, S. (2023). Adoptable approaches to predictive maintenance in mining industry: An overview. Resources Policy, 86, 104291. https://doi.org/10.1016/j.resourpol.2023.104291
Drakaki, M., Karnavas, Y. L., Tziafettas, I. A., Linardos, V., & Tzionas, P. (2022). Machine learning and deep learning based methods toward industry 4.0 predictive maintenance in induction motors: State of the art survey. Journal of Industrial Engineering and Management, 15(1), 31-57. https://doi.org/10.3926/jiem.3597
Ehrhardt, J., & Wilms, M. (2022). Autoencoders and variational autoencoders in medical image analysis. Biomedical Image Synthesis and Simulation, 129-162. https://doi.org/10.1016/B978-0-12-824349-7.00015-3
Fatima, S. S. W., & Rahimi, A. (2024). A review of time-series forecasting algorithms for industrial manufacturing Systems. Machines, 12(6), 380. https://doi.org/10.3390/machines12060380
Figueira, A., & Vaz, B. (2022). Survey on synthetic data generation, evaluation methods and GANs. Mathematics, 10(15), 2733. https://doi.org/10.3390/math10152733
Geisbush, J., & Ariaratnam, S. T. (2023). Reliability centered maintenance (RCM): Literature review of current industry state of practice. Journal of Quality in Maintenance Engineering, 29(2), 313-337. https://doi.org/10.1108/JQME-02-2021-0018
Goyal, M., & Mahmoud, Q. H. (2024). A systematic review of synthetic data generation techniques using generative AI. Electronics, 13(17), 3509. https://doi.org/10.1108/JQME-02-2021-0018
Karippur, N. K., Balaramachandran, P. R., & John, E. (2024). Data driven predictive maintenance for large-scale asset-heavy process industries in Singapore. Journal of Manufacturing Technology Management, 35(3), 544-567. https://doi.org/10.1108/JMTM-05-2023-0173
Khalil, R. A., Saeed, N., Masood, M., Fard, Y. M., Alouini, M. S., & Al-Naffouri, T. Y. (2021). Deep learning in the industrial internet of things: Potentials, challenges, and emerging applications. IEEE Internet of Things Journal, 8(14), 11016-11040. https://doi.org/10.1109/JIOT.2021.3051414
Ma, M., & Mao, Z. (2020). Deep-convolution-based LSTM network for remaining useful life prediction. IEEE Transactions on Industrial Informatics, 17(3), 1658-1667. https://doi.org/10.1109/TII.2020.2991796
Ma, S., Flanigan, K. A., & Bergés, M. (2024). State-of-the-art review and synthesis: A requirement-based roadmap for standardized predictive maintenance automation using digital twin technologies. Advanced Engineering Informatics, 62, 102800. https://doi.org/10.1016/j.aei.2024.102800
Meddaoui, A., Hain, M., & Hachmoud, A. (2023). The benefits of predictive maintenance in manufacturing excellence: a case study to establish reliable methods for predicting failures. The International Journal of Advanced Manufacturing Technology, 128, 3685-3690. https://doi.org/10.1007/s00170-023-12086-6
Mienye, I. D., Swart, T. G., & Obaido, G. (2024). Recurrent neural networks: A comprehensive review of architectures, variants and Applications. Information, 15(9), 517. https://doi.org/10.3390/info15090517
Möller, D. P. F. (2023). Guide to Cybersecurity in Digital Transformation: Trends, Methods, Technologies, Applications and Best Practices. Springer Nature Switzerland.
Moskolaï, W. R., Abdou, W., Dipanda, A., & Kolyang. (2021). Application of deep learning architectures for satellite image time series prediction: A review. Remote Sensing, 13(23), 4822. https://doi.org/10.3390/rs13234822
Mwanza, J., Telukdarie, A., & Igusa, T. (2023). Impact of industry 4.0 on healthcare systems of low-and middle-income countries: A systematic review. Health and Technology, 13(1), 35-52. https://doi.org/10.1007/s12553-022-00714-2
Neloy, A. A., & Turgeon, M. (2024). A comprehensive study of auto-encoders for anomaly detection: Efficiency and trade-offs. Machine Learning with Applications, 17, 100572. https://doi.org/10.1016/j.mlwa.2024.100572
Niu, Z., Yu, K., & Wu, X. (2020). LSTM-based VAE-GAN for time-series anomaly detection. Sensors, 20(13), 3738. https://doi.org/10.3390/s20133738
Niyonambaza, I., Zennaro, M., & Uwitonze, A. (2020). Predictive maintenance (Pdm) structure using internet of things (IoT) for mechanical equipment used into hospitals in Rwanda. Future Internet, 12(12), 224. https://doi.org/10.3390/fi12120224
Nunes, P., Santos, J., & Rocha, E. (2023). Challenges in predictive maintenance - A review. CIRP Journal of Manufacturing Science and Technology, 40, 53-67. https://doi.org/10.1016/j.cirpj.2022.11.004
Oluwasanmi, A., Aftab, M. U., Baagyere, E., Qin, Z., Ahmad, M., & Mazzara, M. (2021). Attention autoencoder for generative latent representational learning in anomaly detection. Sensors, 22(1), 123. https://doi.org/10.3390/s22010123
Ooko, S. O., & Karume, S. M. (2024). Application of tiny machine learning in predicative maintenance in industries. Journal of Computing Theories and Applications, 2(1), 132. https://doi.org/10.62411/jcta.10929
Pandey, R., Uziel, S., Hutschenreuther, T., & Krug, S. (2023). Towards deploying DNN models on edge for predictive maintenance applications. Electronics, 12(3), 639. https://doi.org/10.3390/electronics12030639
Patil, S. A., Sable, N. P., Mahalle, P. N., & Shinde, G. R. (2023). Intelligent mechanisms for PdM in automotive machinery: A comprehensive analysis using ML/DL. Journal of Electrical Systems, 19(2). https://doi.org/10.52783/jes.697
Rahmanović, A., Hakić, E., Saračević, M., & Međedović, E. (2023). Application and development of embedded systems with IoT components: Aspect of safety and reliability. SAR Journal, 6(4). https://doi.org/10.18421/SAR64-03
Rosati, R., Romeo, L., Cecchini, G., Tonetto, F., Viti, P., Mancini, A., & Frontoni, E. (2023). From knowledge-based to big data analytic model: a novel IoT and machine learning based decision support system for predictive maintenance in Industry 4.0. Journal of Intelligent Manufacturing, 34, 107-121. https://doi.org/10.1007/s10845-022-01960-x
Samuel, A. T. (2024). The justification of complex systems analysis in better informing project decisions: A study of the us surface transportation board. International Journal of Research and Scientific Innovation, 11(8), 263-280.
Schlüter, M., Brelsford, C., Ferraro, P. J., Orach, K., Qiu, M., & Smith, M. D. (2023). Unraveling complex causal processes that affect sustainability requires more integration between empirical and modeling approaches. National Academy of Sciences, 120(41), e2215676120. https://doi.org/10.1073/pnas.2215676120
SenthilVadivel, T., Suseelan, A., Karthick, K., Safran, M., & Alfarhood, S. (2024). Experimental investigation and machine learning prediction of mechanical properties of rubberized concrete for sustainable construction. Scientific Reports, 14(1), 22725. https://doi.org/10.1038/s41598-024-73504-7
Shahin, M., Chen, F. F., Hosseinzadeh, A., & Zand, N. (2023). Using machine learning and deep learning algorithms for downtime minimization in manufacturing systems: An early failure detection diagnostic service. The International Journal of Advanced Manufacturing Technology, 128, 3857-3883. https://doi.org/10.1007/s00170-023-12020-w
Song, X., Zhang, Q., Sun, R., Tian, R., Sun, J., Li, C., Cui, Y. (2023). A hybrid deep learning prediction method of remaining useful life for rolling bearings using multiscale stacking deep residual shrinkage network. International Journal of Intelligent Systems, 2023(1), 6665534. https://doi.org/10.1155/2023/6665534
Tapo, A. A., Traoré, A., Danioko, S., & Tembine, H. (2024). Machine intelligence in Africa: A survey. ArXiv, abs/2402.02218. https://doi.org/10.48550/arXiv.2402.02218
Ucar, A., Karakose, M., & Kırımça, N. (2024). Artificial intelligence for predictive maintenance applications: Key components, trustworthiness, and future trends. Applied Sciences, 14(2), 898. https://doi.org/10.3390/app14020898
Wang, H., Zhang, W., Yang, D., & Xiang, Y. (2022). Deep-learning-enabled predictive maintenance in industrial internet of things: methods, applications, and challenges. IEEE Systems Journal, 17(2), 2602-2615. https://doi.org/10.1109/JSYST.2022.3193200
Wang, J., Wang, P., Tian, H., Tansey, K., Liu, J., & Quan, W. (2023). A deep learning framework combining CNN and GRU for improving wheat yield estimates using time series remotely sensed multi-variables. Computers and Electronics in Agriculture, 206, 107705. https://doi.org/10.1016/j.compag.2023.107705
Wang, Y., Zhang, Z., Feng, L., Ma, Y., & Du, Q. (2021). A new attention-based CNN approach for crop mapping using time series Sentinel-2 images. Computers and electronics in agriculture, 184, 106090. https://doi.org/10.1016/j.compag.2021.106090
Weerakody, P. B., Wong, K. W., Wang, G., & Ela, W. (2021). A review of irregular time series data handling with gated recurrent neural networks. Neurocomputing, 441, 161-178. https://doi.org/10.1016/j.neucom.2021.02.046
Xu, X., Mo, R., Yin, X., Khosravi, M. R., Aghaei, F., Chang, V., & Li, G. (2020). PDM: Privacy-aware deployment of machine-learning applications for industrial cyber–physical cloud systems. IEEE Transactions on Industrial Informatics, 17(8), 5819-5828. https://doi.org/10.1109/TII.2020.3031440
Yazdi, M. (2024). Advances in Computational Mathematics for Industrial System Reliability and Maintainability. Springer Nature Switzerland.
Yurek, O. E., Birant, D., & Kut, A. (2022). T-PdM: a tripartite predictive maintenance framework using machine learning algorithms. International Journal of Computational Science and Engineering, 25(3), 325-338. https://doi.org/10.1504/IJCSE.2022.10047722
Article Details
Abstract views: 19
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
