Evaluating the impact of residual learning and feature fusion on soil moisture prediction accuracy
Article Sidebar
Open full text
Issue Vol. 21 No. 4 (2025)
-
Real-time detection of seat belt usage in overhead traffic surveillance using YOLOv7
Catur Edi WIDODO, Kusworo ADI, Priyono PRIYONO, Aji SETIAWAN1-12
-
SoundCrafter: Bridging text and Sound with a diffusion model
Haitham ALHAJI, Alaa Yaseen TAQA13-20
-
Application of encoder-based motion analysis and machine learning for knee osteoarthritis detection: A pilot study
Robert KARPIŃSKI, Arkadiusz SYTA21-31
-
SSAtt-SolNet: An efficient model for dusty solar panel classification with Sparse Shuffle and Attention mechanisms
An CONG TRAN, Nghi CONG TRAN32-46
-
IoT-driven environmental optimization for hydroponic lettuce: A data-centric approach to smart agriculture
Okky Putra BARUS, Ade MAULANA, Pujianto YUGOPUSPITO, Achmad Nizar HIDAYANTO, Winar Joko ALEXANDER47-58
-
Computer-Aided System with Machine Learning components for generating medical recommendations for type 1 diabetes patients
Tomasz NOWICKI59-75
-
Interpretable VAE-based predictive modeling for enhanced complex industrial systems dependability in developing countries
Richard NASSO TOUMBA, Maxime MOAMISSOAL SAMUEL, Achille EBOKE, Wangkaké TAIWE, Timothée KOMBE76-97
-
Measuring comparative eco-efficiency in the Eurasian Economic Union using MaxDEA X 12.2 software
Bella GABRIELYAN, Narek KESOYAN, Armen GHAZARYAN, Argam ARTASHYAN98-109
-
K4F-Net: Lightweight multi-view speech emotion recognition with Kronecker convolution and cross-language robustness
Paweł POWROŹNIK, Maria SKUBLEWSKA-PASZKOWSKA110-126
-
The modelling of NiTi shape memory alloy functional properties by machine learning methods
Volodymyr HUTSAYLYUK, Vladyslav DEMCHYK, Oleh YASNIY, Nadiia LUTSYK, Andrii FIIALKA127-135
-
Application of machine learning algorithms for forecasting labour demand in the metallurgical industry of the east Kazakhstan region
Oxana DENISSOVA, Aman ISMUKHAMEDOV, Zhadyra KONURBAYEVA, Saule RAKHMETULLINA, Yelena SAMUSSENKO, Monika KULISZ136-158
-
Evaluating the impact of residual learning and feature fusion on soil moisture prediction accuracy
Pascal YAMAKILI, Mrindoko Rashid NICHOLAUS, Kenedy Aliila GREYSON159-168
Archives
-
Vol. 21 No. 4
2025-12-31 12
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2026-01-08 8
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
Main Article Content
DOI
Authors
Abstract
The architectural design of deep learning models significantly influences their predictive capabilities in environmental monitoring tasks. This paper investigates the individual and collective effects of residual learning and feature fusion mechanism to improve the performance of soil moisture estimation on the designed architecture of the deep learning model. In this study, the data fusion mechanism was used to integrate Normalized Difference Water Index (NDWI), Synthetic Aperture Radar (SAR), and satellite imagery datasets containing Red, Green, and Blue (RGB) color channels, which consist of images or data collected by a radar system that uses microwaves to produce images of the Earth's surface. Three model variants were developed, each selectively omitting one or more of these architectural elements, and their performance was evaluated using three standard metrics, Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Coefficient of Determination (R2). The results of the final proposed model architecture showed that while each component contributes to accuracy improvements, the combination of residual learning and feature fusion yields the most significant gains. Improved results of RMSE = 0.0117, R²=0.814 and Mean Absolute Error=0.0148 were obtained. These performance indicators were superior to the results of most of the baseline models after comparative analysis. Thus, this study provides insights into model component selection for deep learning soil moisture prediction applications.
Keywords:
References
Adab, H., Morbidelli, R., Saltalippi, C., Moradian, M., & Ghalhari, G. A. F. (2020). Machine learning to estimate surface soil moisture from remote sensing data. Water, 12(11), 3223. https://doi.org/10.3390/W12113223
Babaeian, E., Sadeghi, M., Jones, S. B., Montzka, C., Vereecken, H., & Tuller, M. (2019). Ground, proximal, and satellite remote sensing of soil moisture. Reviews of Geophysics, 57(2), 530–616. https://doi.org/10.1029/2018RG000618
Batchu, V. (2022). A machine learning data fusion model for soil moisture retrieval. ArXiv, abs/2206.09649. https://doi.org/10.48550/arXiv.2206.09649
Brocca, L., Melone, F., Moramarco, T., & Morbidelli, R. (2010). Spatial-temporal variability of soil moisture and its estimation across scales. Water Resources Research, 46(2). https://doi.org/10.1029/2009WR008016
Diaz, J., Vasquez, R., Garavito-Gonzalez, A. F., & Vásquez, E. (2024). Dataset of Sentinel-1 SAR and Sentinel-2 NDVI imagery (Version 3) [Data set]. Mendeley Data. https://doi.org/10.17632/xjcr5k4c9t.3
Dinesh, D., Kumar, S., & Saran, S. (2024). Machine learning modelling for soil moisture retrieval from simulated NASA-ISRO SAR (NISAR) L-Band Data. Remote Sensing, 16(18), 3539. https://doi.org/10.3390/RS16183539
Famiglietti, J. S., Ryu, D., Berg, A. A., Rodell, M., & Jackson, T. J. (2008). Field observations of soil moisture variability across scales. Water Resources Research, 44(1), W01423. https://doi.org/10.1029/2006WR005804
Heckel, K., Urban, M., Schratz, P., Mahecha, M. D., & Schmullius, C. (2020). Predicting forest cover in distinct ecosystems: The potential of multi-ssource Sentinel-1 and -2 data fusion. Remote Sensing, 12(2), 302. https://doi.org/10.3390/RS12020302
Hunduma, S., & Kebede, G. (2020). Indirect methods of measuring soil moisture content using different Sensors 1. African Journal of Basic & Applied Sciences, 12(3), 37–55. https://doi.org/10.5829/idosi.ajbas.2020.37.55
Li, M., & Yan, Y. (2024). Comparative analysis of machine-learning models for soil moisture estimation using high-resolution remote-sensing data. Land, 13(8), 1331. https://doi.org/10.3390/LAND13081331
Massari, C., Su, C. H., Brocca, L., Sang, Y. F., Ciabatta, L., Ryu, D., & Wagner, W. (2017). Near real time de-noising of satellite-based soil moisture retrievals: An intercomparison among three different techniques. Remote Sensing of Environment, 198, 17–29. https://doi.org/10.1016/J.RSE.2017.05.037
Mohanty, B. P., & Skaggs, T. H. (2001). Spatio-temporal evolution and time-stable characteristics of soil moisture within remote sensing footprints with varying soil, slope, and vegetation. Advances in Water Resources, 24(9–10), 1051–1067. https://doi.org/10.1016/S0309-1708(01)00034-3
Rasheed, M. W., Tang, J., Sarwar, A., Shah, S., Saddique, N., Khan, M. U., Imran Khan, M., Nawaz, S., Shamshiri, R. R., Aziz, M., & Sultan, M. (2022). Soil moisture measuring techniques and factors affecting the moisture dynamics: A comprehensive review. Sustainability, 14(18), 11538. https://doi.org/10.3390/su141811538
Rodriguez-Alvarez, N., Munoz-Martin, J. F., & Morris, M. (2023). Latest advances in the global navigation satellite system - reflectometry (GNSS-R) field. Remote Sensing, 15(8), 2157. https://doi.org/10.3390/RS15082157
Scott, C. A., Bastiaanssen, W. G. M., & Ahmad, M.-D. (2003). Mapping root zone soil moisture using remotely sensed optical imagery. Journal of Irrigation and Drainage Engineering, 129(5), 326–335. https://doi.org/10.1061/(ASCE)0733-9437(2003)129:5(326)
Shokati, H., Mashal, M., Noroozi, A., Abkar, A. A., Mirzaei, S., Mohammadi-Doqozloo, Z., Taghizadeh-Mehrjardi, R., Khosravani, P., Nabiollahi, K., & Scholten, T. (2024). Random forest-based soil moisture estimation using Sentinel-2, Landsat-8/9, and UAV-Based hyperspectral data. Remote Sensing, 16(11), 1962. https://doi.org/10.3390/rs16111962
Uthayakumar, A., Mohan, M. P., Khoo, E. H., Jimeno, J., Siyal, M. Y., & Karim, M. F. (2022). Machine learning models for enhanced estimation of soil moisture using wideband radar sensor. Sensors, 22(15), 5810. https://doi.org/10.3390/S22155810
Article Details
Abstract views: 20
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
