Real-time detection of seat belt usage in overhead traffic surveillance using YOLOv7
Article Sidebar
Open full text
Issue Vol. 21 No. 4 (2025)
-
Real-time detection of seat belt usage in overhead traffic surveillance using YOLOv7
Catur Edi WIDODO, Kusworo ADI, Priyono PRIYONO, Aji SETIAWAN1-12
-
SoundCrafter: Bridging text and Sound with a diffusion model
Haitham ALHAJI, Alaa Yaseen TAQA13-20
-
Application of encoder-based motion analysis and machine learning for knee osteoarthritis detection: A pilot study
Robert KARPIŃSKI, Arkadiusz SYTA21-31
-
SSAtt-SolNet: An efficient model for dusty solar panel classification with Sparse Shuffle and Attention mechanisms
An CONG TRAN, Nghi CONG TRAN32-46
-
IoT-driven environmental optimization for hydroponic lettuce: A data-centric approach to smart agriculture
Okky Putra BARUS, Ade MAULANA, Pujianto YUGOPUSPITO, Achmad Nizar HIDAYANTO, Winar Joko ALEXANDER47-58
-
Computer-Aided System with Machine Learning components for generating medical recommendations for type 1 diabetes patients
Tomasz NOWICKI59-75
-
Interpretable VAE-based predictive modeling for enhanced complex industrial systems dependability in developing countries
Richard NASSO TOUMBA, Maxime MOAMISSOAL SAMUEL, Achille EBOKE, Wangkaké TAIWE, Timothée KOMBE76-97
-
Measuring comparative eco-efficiency in the Eurasian Economic Union using MaxDEA X 12.2 software
Bella GABRIELYAN, Narek KESOYAN, Armen GHAZARYAN, Argam ARTASHYAN98-109
-
K4F-Net: Lightweight multi-view speech emotion recognition with Kronecker convolution and cross-language robustness
Paweł POWROŹNIK, Maria SKUBLEWSKA-PASZKOWSKA110-126
-
The modelling of NiTi shape memory alloy functional properties by machine learning methods
Volodymyr HUTSAYLYUK, Vladyslav DEMCHYK, Oleh YASNIY, Nadiia LUTSYK, Andrii FIIALKA127-135
-
Application of machine learning algorithms for forecasting labour demand in the metallurgical industry of the east Kazakhstan region
Oxana DENISSOVA, Aman ISMUKHAMEDOV, Zhadyra KONURBAYEVA, Saule RAKHMETULLINA, Yelena SAMUSSENKO, Monika KULISZ136-158
-
Evaluating the impact of residual learning and feature fusion on soil moisture prediction accuracy
Pascal YAMAKILI, Mrindoko Rashid NICHOLAUS, Kenedy Aliila GREYSON159-168
Archives
-
Vol. 21 No. 4
2025-12-31 12
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
Main Article Content
DOI
Authors
caturediwidodo@lecturer.undip.ac.id
kusworoadi@lecturer.undip.ac.id
Abstract
Driving safety plays a critical role in minimizing traffic accidents, and seat belt usage is one of the most effective preventive measures. This study aims to implement the YOLOv7 object detection model to automatically detect seat belt usage in four-wheeled vehicles using overhead traffic surveillance images. The proposed method consists of three main stages: dataset preparation, model training, and model evaluation. Dataset preparation includes acquiring video footage from different locations and time conditions, extracting image frames, and annotating four object classes: car, windshield, passenger, and seat belt. The model is trained on a dataset consisting of images taken during both day and night conditions. During training, data augmentation and anchor box optimization are applied to improve model generalization. The trained model is evaluated on an unseen test dataset and achieves a Mean Average Precision at 50% Intersection over Union (mAP50) of 97.46% and an F1 score of 95.37% at the optimal confidence level. These results indicate high detection accuracy for all object classes, especially for the seat belt class with an AP of 93.40%. The proposed system offers a promising solution for real-time traffic enforcement, reducing the reliance on manual observation and potentially improving traffic safety monitoring.
Keywords:
References
Castellà, J., & Pérez, J. (2004). Sensitivity to punishment and sensitivity to reward and traffic violations. Accident Analysis and Prevention, 36(6), 947-952. https://doi.org/10.1016/j.aap.2003.10.003
Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) (pp. 886-893). IEEE. https://doi.org/10.1109/CVPR.2005.177
Dasiopoulou, S., Mezaris, V., Kompatsiaris, I., Papastathis, V. K., & Strintzis, M. G. (2005). Knowledge-assisted semantic video object detection. IEEE Transactions on Circuits and Systems for Video Technology, 15(10). https://doi.org/10.1109/TCSVT.2005.854238
Deng, L., & Yu, D. (2013). Deep learning: Methods and applications. Foundations and Trends in Signal Processing, 7(3–4), 197-387. http://dx.doi.org/10.1561/2000000039
DZ Computer Vision. (2021, August 15). Traffic count, monitoring with computer vision. 4K, UHD, HD [Video]. YouTube. https://youtu.be/2kYpqSMqrzg
Elihos, A., Alkan, B., Balci, B., & Artan, Y. (2018). Comparison of image classification and object detection for passenger seat belt violation detection using NIR RGB surveillance camera images. 2018 15th IEEE International Conference on Advanced Video and Signal-Based Surveillance (AVSS) (pp. 1-6). IEEE. https://doi.org/10.1109/AVSS.2018.8639447
Girshick, R. (2015). Fast R-CNN. 2015 IEEE International Conference on Computer Vision (ICCV) (pp. 1440–1448). IEEE. https://doi.org/10.1109/ICCV.2015.169
Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (pp. 580-587). IEEE. https://doi.org/10.1109/CVPR.2014.81
Guo, H., Lin, H., Zhang, S., & Li, S. (2011). Image-based seat belt detection. 2011 IEEE International Conference on Vehicular Electronics and Safety (pp. 161–164). IEEE. https://doi.org/10.1109/ICVES.2011.5983807
Jiao, L., Zhang, F., Liu, F., Yang, S., Li, L., Feng, Z., & Qu, R. (2019). A survey of deep learning-based object detection. IEEE Access, 7, 128837-128868. https://doi.org/10.1109/ACCESS.2019.2939201
Lee, J. D. (2005). Driving safety. Reviews of Human Factors and Ergonomics, 1(1), 172–218. https://doi.org/10.1518/155723405783703037
Lin, T. Y., Goyal, P., Girshick, R., He, K., & Dollar, P. (2020). Focal loss for dense object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(2). https://doi.org/10.1109/TPAMI.2018.2858826
Liu, S., Peng, Y., & Liu, L. (2021). A novel ship detection method in remote sensing images via effective and efficient PP-YOLO. IEEE International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC 2021) (pp. 234-239). IEEE. https://doi.org/10.1109/SDPC52933.2021.9563569
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg, A. C. (2016). SSD: Single shot MultiBox detector. In B. Leibe, J. Matas, N. Sebe, & M. Welling (Eds.), Computer Vision – ECCV 2016 (Vol. 9905, pp. 21–37). Springer International Publishing. https://doi.org/10.1007/978-3-319-46448-0_2
Lowe, D. G. (1999). Object recognition from local scale-invariant features. IEEE International Conference on Computer Vision (pp. 1150-1157). IEEE. https://doi.org/10.1109/iccv.1999.790410
Majek, K. (2018, July 16). 4K Road traffic video for object detection and tracking - free download now! [Video]. YouTube. https://youtu.be/MNn9qKG2UFI
Mohialden, Y. M., Kadhim, R. W., Hussien, N. M., & Hussain, S. A. K. (2024). Top Python-based deep learning packages: A comprehensive review. International Journal Papier Advance and Scientific Review, 5(1). https://doi.org/10.47667/ijpasr.v5i1.283
Panasonic Connect Europe. (2015, November 10). 5.5 4K Camera Road in Thailand No 2 [Video]. YouTube. https://youtu.be/F4bICvLY024
Redmon, J., & Farhadi, A. (2017). YOLO9000: Better, faster, stronger. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017) (pp. 6517-6525). IEEE. https://doi.org/10.1109/CVPR.2017.690
Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You Only Look Once: Unified, real-time object detection. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (pp. 779-788). IEEE. https://doi.org/10.1109/CVPR.2016.91
Ren, S., He, K., Girshick, R., & Sun, J. (2017). Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6), 1137-1149. https://doi.org/10.1109/TPAMI.2016.2577031
Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. ArXiv, abs/1409.1556. https://doi.org/10.48550/arXiv.1409.1556
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 1-9). IEEE. https://doi.org/10.1109/CVPR.2015.7298594
Viola, P., & Jones, M. (2001). Rapid object detection using a boosted cascade of simple features. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2001) (pp. 1-1). IEEE. https://doi.org/10.1109/cvpr.2001.990517
Wang, C.-Y., Bochkovskiy, A., & Liao, H.-Y. M. (2023). YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object Detectors. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 7464-7475). IEEE. https://doi.org/10.1109/cvpr52729.2023.00721
WongKinYiu. (2023). YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors [GitHub repository]. GitHub. https://github.com/WongKinYiu/yolov7
Zhou, B., Chen, L., Tian, J., & Peng, Z. (2017). Learning-based seat belt detection in image using salient gradient. 12th IEEE Conference on Industrial Electronics and Applications (ICIEA 2017) (pp. 547-550). IEEE. https://doi.org/10.1109/ICIEA.2017.8282904
Zhu, S., & Miao, M. (2024). Lightweight high-precision SAR ship detection method based on YOLOv7-LDS. PLoS ONE, 19(2), e0296992. https://doi.org/10.1371/journal.pone.0296992
Article Details
Abstract views: 18
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
