SSAtt-SolNet: An efficient model for dusty solar panel classification with Sparse Shuffle and Attention mechanisms
Article Sidebar
Open full text
Issue Vol. 21 No. 4 (2025)
-
Real-time detection of seat belt usage in overhead traffic surveillance using YOLOv7
Catur Edi WIDODO, Kusworo ADI, Priyono PRIYONO, Aji SETIAWAN1-12
-
SoundCrafter: Bridging text and Sound with a diffusion model
Haitham ALHAJI, Alaa Yaseen TAQA13-20
-
Application of encoder-based motion analysis and machine learning for knee osteoarthritis detection: A pilot study
Robert KARPIŃSKI, Arkadiusz SYTA21-31
-
SSAtt-SolNet: An efficient model for dusty solar panel classification with Sparse Shuffle and Attention mechanisms
An CONG TRAN, Nghi CONG TRAN32-46
-
IoT-driven environmental optimization for hydroponic lettuce: A data-centric approach to smart agriculture
Okky Putra BARUS, Ade MAULANA, Pujianto YUGOPUSPITO, Achmad Nizar HIDAYANTO, Winar Joko ALEXANDER47-58
-
Computer-Aided System with Machine Learning components for generating medical recommendations for type 1 diabetes patients
Tomasz NOWICKI59-75
-
Interpretable VAE-based predictive modeling for enhanced complex industrial systems dependability in developing countries
Richard NASSO TOUMBA, Maxime MOAMISSOAL SAMUEL, Achille EBOKE, Wangkaké TAIWE, Timothée KOMBE76-97
-
Measuring comparative eco-efficiency in the Eurasian Economic Union using MaxDEA X 12.2 software
Bella GABRIELYAN, Narek KESOYAN, Armen GHAZARYAN, Argam ARTASHYAN98-109
-
K4F-Net: Lightweight multi-view speech emotion recognition with Kronecker convolution and cross-language robustness
Paweł POWROŹNIK, Maria SKUBLEWSKA-PASZKOWSKA110-126
-
The modelling of NiTi shape memory alloy functional properties by machine learning methods
Volodymyr HUTSAYLYUK, Vladyslav DEMCHYK, Oleh YASNIY, Nadiia LUTSYK, Andrii FIIALKA127-135
-
Application of machine learning algorithms for forecasting labour demand in the metallurgical industry of the east Kazakhstan region
Oxana DENISSOVA, Aman ISMUKHAMEDOV, Zhadyra KONURBAYEVA, Saule RAKHMETULLINA, Yelena SAMUSSENKO, Monika KULISZ136-158
-
Evaluating the impact of residual learning and feature fusion on soil moisture prediction accuracy
Pascal YAMAKILI, Mrindoko Rashid NICHOLAUS, Kenedy Aliila GREYSON159-168
Archives
-
Vol. 21 No. 4
2025-12-31 12
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2026-01-08 8
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
Main Article Content
DOI
Authors
Abstract
This study introduces SSAtt-SolNet, a novel deep learning approach designed to detect dusty solar panels, thereby improving the efficiency and reliability of solar photovoltaic systems. The proposed model uses MobileNetV3 as its backbone to balance accuracy and computational efficiency. We introduced a novel sparse shuffle block that combines depth-separable convolution with a shuffle layer to improve model performance. We also incorporated an attention mechanism in the classification layer to selectively focus on relevant features while minimizing noise interference. This lightweight approach was evaluated on two public and one self-collected dataset containing a total of 10,118 images. The model was benchmarked against eight SOTA models in image classification and dusty solar panel detection using four metrics: accuracy, model parameters, model size, and floating point operations (FLOPs). The experimental results showed that our approach outperformed all baseline models, achieving the smallest standard deviation over five folds (99.68 ± 0.3%). Furthermore, the proposed model had the smallest size, the fewest parameters, and the minimum GFLOPs (0.1005). The paired t-test confirmed that the accuracy of our model is statistically significantly higher than all baseline models at the 95% confidence level. These results suggest that our proposed model is feasible for use in environments with limited computing resources.
Keywords:
References
Abuqaaud, K. A., & Ferrah, A. (2020). A novel technique for detecting and monitoring dust and soil on solar photovoltaic panel. 2020 Advances in Science and Engineering Technology International Conferences (ASET) (pp. 1–6). IEEE. https://doi.org/10.1109/ASET48392.2020.9118377
Ahmed, Z., Kazem, H.A., & Sopian, K. (2013). Effect of dust on photovoltaic performance: Review and research status. Latest trends in renewable energy and environmental informatics, 34(6), 193–199. https://doi.org/10.13140/2.1.4527.9523
Alatwi, A. M., Albalawi, H., Wadood, A., Anwar, H., & El-Hageen, H. M. (2024). Deep learning- based dust detection on solar panels: A low-cost sustainable solution for increased solar power generation. Sustainability, 16(19), 8664. https://doi.org/10.3390/su16198664
Alnasser, T. M., Mahdy, A. M., Abass, K. I., Chaichan, M. T., & Kazem, H. A. (2020). Impact of dust ingredient on photovoltaic performance: An experimental study. Solar Energy, 195, 651–659. https://doi.org/10.1016/j.solener.2019.12.008
Bharati, P., & Pramanik, A. (2020). Deep Learning Techniques—R-CNN to Mask R-CNN: A Survey. In A. K. Das, J. Nayak, B. Naik, S. K. Pati, & D. Pelusi (Eds), Computational Intelligence in Pattern Recognition (Vol. 999, pp. 657–668). Springer Singapore. https://doi.org/10.1007/978-981-13-9042-5_56
Chaudhary, A. S., & Chaturvedi, D. K. (2017). Thermal image analysis and segmentation to study temperature effects of cement and bird deposition on surface of solar panels. International Journal of Image, Graphics and Signal Processing, 9(12), 12-22. https://doi.org/10.5815/ijigsp.2017.12.02
Costa, S. C., Diniz, A. S. A., & Kazmerski, L. L. (2016). Dust and soiling issues and impacts relating to solar energy systems: Literature review update for 2012–2015. Renewable and Sustainable Energy Reviews, 63, 33–61. https://doi.org/10.1016/j.rser.2016.04.059
Cubukcu, M., & Akanalci, A. (2020). Real-time inspection and determination methods of faults on photovoltaic power systems by thermal imaging in Turkey. Renewable Energy, 147, 1231–1238. https://doi.org/10.1016/j.renene.2019.09.075
Dantas, G. M., Mendes, O. L. C., Maia, S. M., Alexandria, A. R. (2020). Dust detection in solar panel using image processing techniques: A review. Research, Society and Development, 9(8), 321985107–321985107. https://doi.org/10.33448/rsd-v9i8.5107
Guo, Z., Wang, C., Yang, G., Huang, Z., & Li, G. (2022). MSFT-YOLO: Improved YOLOv5 based on transformer for detecting defects of steel surface. Sensors, 22(9), 3467. https://doi.org/10.3390/s22093467
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 770–778). IEEE. https://doi.org/10.1109/CVPR.2016.90
Howard, A., Sandler, M., Chen, B., Wang, W., Chen, L.-C., Tan, M., Chu, G., Vasudevan, V., Zhu, Y., Pang, R., Adam, H., & Le, Q. (2019). Searching for MobileNetV3. 2019 IEEE/CVF International Conference on Computer Vision (ICCV) (pp. 1314–1324). IEEE. https://doi.org/10.1109/ICCV.2019.00140
Igathinathane, C., Melin, S., Sokhansanj, S., Bi, X., Lim, C. J., Pordesimo, L. O., Columbus, E. P. (2009). Machine vision based particle size and size distribution determination of airborne dust particles of wood and bark pellets. Powder Technology, 196(2), 202–212. https://doi.org/10.1016/j.powtec.2009.07.024
Javed, W., Guo, B., & Figgis, B. (2017). Modeling of photovoltaic soiling loss as a function of environmental variables. Solar Energy, 157, 397–407. https://doi.org/10.1016/j.solener.2017.08.046
Koonce, B. (2021). Convolutional neural networks with Swift for Tensorflow: image recognition and dataset categorization. Apress.
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539
Maitre, J., Bouchard, K., B ́edard, L. P. (2019). Mineral grains recognition using computer vision and machine learning. Computers & Geosciences, 130, pp. 84–93. https://doi.org/10.1016/j.cageo.2019.05.009
Maity, R., Shamaun Alam, Md., & Pati, A. (2020). An approach for detection of dust on solar panels using CNN from RGB dust Image to predict power loss. In P. K. Mallick, P. K. Pattnaik, A. R. Panda, & V. E. Balas (Eds), Cognitive Computing in Human Cognition (Vol. 17, pp. 41–48). Springer International Publishing. https://doi.org/10.1007/978-3-030-48118-6_4
Mohammed, H. A., Baha’a, A., & Al-Mejibli, I. S. (2018). Smart system for dust detecting and removing from solar cells. Journal of Physics, 1032(012055). 10.1088/1742-6596/1032/1/012055
Ogbolumani, O., & Nwulu, N. (2022): A food-energy-water nexus meta-model for food and energy security. Sustain Prod Consum, 30, 438–453. https://doi.org/10.1016/j.spc.2021.12.019
Onim, M. S. H., Sakif, Z. M. M., Ahnaf, A., Kabir, A., Azad, A. K., Oo, A. M. T., Afreen, R., Hridy, S. T., Hossain, M., Jabid, T., & Jabid, T. (2022). Solnet: a convolutional neural network for detecting dust on solar panels. Energies, 16(1), 155. https://doi.org/10.3390/en16010155
Proietti, A., Panella, M., Leccese, F., & Svezia, E. (2015). Dust detection and analysis in museum environment based on pattern recognition. Measurement, 66, 62–72. https://doi.org/10.1016/j.measurement.2015.01.019
Qasem, H., Mnatsakanyan, A., & Banda, P. (2016). Assessing dust on PV modules using image processing techniques. 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC) (pp. 2066–2070). IEEE. https://doi.org/10.1109/PVSC.2016.7749993
Sarver, T., Al-Qaraghuli, A., Kazmerski, L. L. (2013). A comprehensive review of the impact of dust on the use of solar energy: History, investigations, results, literature, and mitigation approaches. Renewable and Sustainable Energy Reviews, 22, 698–733. https://doi.org/10.1016/j.rser.2012.12.011
Sayyah, A., Horenstein, M. N., & Mazumder, M. K. (2014). Energy yield loss caused by dust deposition on photovoltaic panels. Solar Energy, 107, 576–604. https://doi.org/10.1016/j.solener.2014.05.030
Shairi, N. A. S., Ghoni, R., & Ali, K. (2020). Solar panel dust monitoring system. Eng. Herit. J 4(2), 44–45. https://doi.org/10.26480/gwk.02.2020.44.45
Shao, Y., Fan, S., Sun, H., Tan, Z., Cai, Y., Zhang, C., & Zhang, L. (2023). Multi-scale lightweight neural network for steel surface defect detection. Coatings, 13(7), 1202. https://doi.org/10.3390/coatings13071202
Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. Journal of Big Data, 6(1), 60. https://doi.org/10.1186/s40537-019-0197-0
Siddique, N., Paheding, S., Elkin, C. P., & Devabhaktuni, V. (2021). U-net and its variants for medical image segmentation: A review of theory and applications. IEEE Access, 9, 82031–82057. https://doi.org/10.1109/ACCESS.2021.3086020
Sinha, D., & El-Sharkawy, M. (2019). Thin mobilenet: An enhanced mobilenet architecture. 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON) (pp. 0280–0285). IEEE. https://doi.org/10.1109/UEMCON47517.2019.8993089
Tribak, H., & Zaz, Y. (2019). Dust soiling concentration measurement on solar panels based on image entropy. 2019 7th International Renewable and Sustainable Energy Conference (IRSEC) (pp. 1–4). IEEE. https://doi.org/10.1109/IRSEC48032.2019.9078250
Van Nguyen, T. (2023). Applications of artificial intelligence in renewable energy: A brief review. 2023 International Conference on System Science and Engineering (ICSSE) (pp. 348–351). IEEE. https://doi.org/10.1109/ICSSE58568.2023.10227160
Wang, Y., Wang, C., Zhang, H., Dong, Y., & Wei, S. (2019). Automatic ship detection based on RetinaNet using multi-resolution Gaofen-3 imagery. Remote Sensing, 11(5), 531. https://doi.org/10.3390/rs11050531
Zainuddin, N. F., Mohammed, M., Al-Zubaidi, S., & Khogali, S. I. (2019). Design and development of smart self-cleaning solar panel system. 2019 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS) (pp. 40–43). IEEE. https://doi.org/10.1109/I2CACIS.2019.8825071
Zyout, I., & Oatawneh, A. (2020). Detection of PV solar panel surface defects using transfer learning of the deep convolutional neural networks. 2020 Advances in Science and Engineering Technology International Conferences (ASET) (pp. 1–4). IEEE. https://doi.org/10.1109/ASET48392.2020.9118279
Article Details
Abstract views: 21
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
