Application of encoder-based motion analysis and machine learning for knee osteoarthritis detection: A pilot study
Article Sidebar
Open full text
Issue Vol. 21 No. 4 (2025)
-
Real-time detection of seat belt usage in overhead traffic surveillance using YOLOv7
Catur Edi WIDODO, Kusworo ADI, Priyono PRIYONO, Aji SETIAWAN1-12
-
SoundCrafter: Bridging text and Sound with a diffusion model
Haitham ALHAJI, Alaa Yaseen TAQA13-20
-
Application of encoder-based motion analysis and machine learning for knee osteoarthritis detection: A pilot study
Robert KARPIŃSKI, Arkadiusz SYTA21-31
-
SSAtt-SolNet: An efficient model for dusty solar panel classification with Sparse Shuffle and Attention mechanisms
An CONG TRAN, Nghi CONG TRAN32-46
-
IoT-driven environmental optimization for hydroponic lettuce: A data-centric approach to smart agriculture
Okky Putra BARUS, Ade MAULANA, Pujianto YUGOPUSPITO, Achmad Nizar HIDAYANTO, Winar Joko ALEXANDER47-58
-
Computer-Aided System with Machine Learning components for generating medical recommendations for type 1 diabetes patients
Tomasz NOWICKI59-75
-
Interpretable VAE-based predictive modeling for enhanced complex industrial systems dependability in developing countries
Richard NASSO TOUMBA, Maxime MOAMISSOAL SAMUEL, Achille EBOKE, Wangkaké TAIWE, Timothée KOMBE76-97
-
Measuring comparative eco-efficiency in the Eurasian Economic Union using MaxDEA X 12.2 software
Bella GABRIELYAN, Narek KESOYAN, Armen GHAZARYAN, Argam ARTASHYAN98-109
-
K4F-Net: Lightweight multi-view speech emotion recognition with Kronecker convolution and cross-language robustness
Paweł POWROŹNIK, Maria SKUBLEWSKA-PASZKOWSKA110-126
-
The modelling of NiTi shape memory alloy functional properties by machine learning methods
Volodymyr HUTSAYLYUK, Vladyslav DEMCHYK, Oleh YASNIY, Nadiia LUTSYK, Andrii FIIALKA127-135
-
Application of machine learning algorithms for forecasting labour demand in the metallurgical industry of the east Kazakhstan region
Oxana DENISSOVA, Aman ISMUKHAMEDOV, Zhadyra KONURBAYEVA, Saule RAKHMETULLINA, Yelena SAMUSSENKO, Monika KULISZ136-158
-
Evaluating the impact of residual learning and feature fusion on soil moisture prediction accuracy
Pascal YAMAKILI, Mrindoko Rashid NICHOLAUS, Kenedy Aliila GREYSON159-168
Archives
-
Vol. 21 No. 4
2025-12-31 12
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2026-01-08 8
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
Main Article Content
DOI
Authors
Abstract
Osteoarthritis (OA) is the most common joint disease and a leading cause of disability, most commonly affecting the knee. Conventional diagnostics rely primarily on imaging, which often detects changes only in advanced stages. This pilot study explores an alternative approach - encoder-based motion analysis combined with machine learning - to support early functional assessment of knee OA. The study included 90 subjects: 45 patients with radiographic evidence of OA and 45 healthy controls. A high-resolution rotary encoder integrated into a stabilizing knee orthosis recorded joint flexion-extension angles and velocities during open kinetic chain (OKC) and closed kinetic chain (CKC) tasks. Each subject performed five repetitions for each condition. Statistical analyses (Mann-Whitney U-test) revealed significant differences between groups, particularly in the CKC condition, where OA patients consistently required more time to complete movements. Machine learning classifiers were trained on cycle duration features. For OKC, accuracy remained modest (Naive Bayes: 65.6%), whereas CKC-based features provided stronger discrimination, with a narrow neural network achieving 80% accuracy and balanced sensitivity/specificity. The results demonstrate the feasibility of wearable encoder-based systems for objective, non-invasive assessment of knee function. CKC tasks showed higher diagnostic value, highlighting their potential for integration into clinical protocols. Future research should expand data sets, incorporate multimodal sensors, and use advanced algorithms to improve diagnostic performance and support real-world monitoring.
Keywords:
References
Allen, K. D., Thoma, L. M., & Golightly, Y. M. (2022). Epidemiology of osteoarthritis. Osteoarthritis and Cartilage, 30(2), 184–195. https://doi.org/10.1016/j.joca.2021.04.020
Bączkowicz, D., & Majorczyk, E. (2014). Joint motion quality in vibroacoustic signal analysis for patients with patellofemoral joint disorders. BMC Musculoskeletal Disorders, 15, 426. https://doi.org/10.1186/1471-2474-15-426
Bandara, A., Shimizu, H., Watanabe, D., Misa, T., Suzuki, S., Tanigawa, K., Nagai-Tanima, M., & Aoyama, T. (2025). Diurnal variations in gait parameters among older adults with early-stage knee osteoarthritis: Insights from wearable sensor technology. Scientific Reports, 15, 8026. https://doi.org/10.1038/s41598-025-91617-5
Befrui, N., Elsner, J., Flesser, A., Huvanandana, J., Jarrousse, O., Le, T. N., Müller, M., Schulze, W. H. W., Taing, S., & Weidert, S. (2018). Vibroarthrography for early detection of knee osteoarthritis using normalized frequency features. Medical & Biological Engineering & Computing, 56(8), 1499–1514. https://doi.org/10.1007/s11517-018-1785-4
Ben Hassine, S., Balti, A., Abid, S., Ben Khelifa, M. M., & Sayadi, M. (2024). Markerless vision-based knee osteoarthritis classification using machine learning and gait videos. Frontiers in Signal Processing, 4, 1479244. https://doi.org/10.3389/frsip.2024.1479244
Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford University PressOxford.
Bryliński, Ł., Brylińska, K., Woliński, F., Sado, J., Smyk, M., Komar, O., Karpiński, R., Prządka, M., & Baj, J. (2025). Trace Elements—Role in Joint Function and Impact on Joint Diseases. International Journal of Molecular Sciences, 26(15), 7493. https://doi.org/10.3390/ijms26157493
Cai, S., Yang, S., Zheng, F., Lu, M., Wu, Y., & Krishnan, S. (2013). Knee joint vibration signal analysis with matching pursuit decomposition and dynamic weighted classifier fusion. Computational and Mathematical Methods in Medicine, 2013(1), 904267. https://doi.org/10.1155/2013/904267
Castro Mejia, A., Gulde, P., & González Salinas, C. (2024). A clinical application of gait quality patterns in osteoarthritis. Gait & Posture, 114, 284–289. https://doi.org/10.1016/j.gaitpost.2024.10.011
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273–297. https://doi.org/10.1007/BF00994018
Courties, A., Kouki, I., Soliman, N., Mathieu, S., & Sellam, J. (2024). Osteoarthritis year in review 2024: Epidemiology and therapy. Osteoarthritis and Cartilage, 32(11), 1397–1404. https://doi.org/10.1016/j.joca.2024.07.014
Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13(1), 21–27. https://doi.org/10.1109/TIT.1967.1053964
De Tocqueville, S., Marjin, M., & Ruzek, M. (2021). A review of the vibration arthrography technique applied to the knee diagnostics. Applied Sciences, 11(16), 7337. https://doi.org/10.3390/app11167337
Diamond, L. E., Grant, T., & Uhlrich, S. D. (2024). Osteoarthritis year in review 2023: Biomechanics. Osteoarthritis and Cartilage, 32(2), 138–147. https://doi.org/10.1016/j.joca.2023.11.015
Falkowicz, K., & Kulisz, M. (2024). Prediction of buckling behaviour of composite plate element using artificial neural networks. Advances in Science and Technology Research Journal, 18(1), 231–243. https://doi.org/10.12913/22998624/177399
Gelber, A. C. (2024). Knee osteoarthritis. Annals of Internal Medicine, 177(9), ITC129–ITC144. https://doi.org/10.7326/ANNALS-24-01249
Goodfellow, I., Courville, A., & Bengio, Y. (2016). Deep learning. The MIT Press.
Hosmer, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied Logistic Regression (1st ed.). John Wiley & Sons.
Jedliński, Ł., & Jonak, J. (2017). A disassembly-free method for evaluation of spiral bevel gear assembly. Mechanical Systems and Signal Processing, 88, 399–412. https://doi.org/10.1016/j.ymssp.2016.11.005
Jedliński, Ł., Syta, A., Gajewski, J., & Jonak, J. (2022). Nonlinear analysis of cylindrical gear dynamics under varying tooth breakage. Measurement, 190, 110721. https://doi.org/10.1016/j.measurement.2022.110721
Karpiński, R. (2022). Knee joint osteoarthritis diagnosis based on selected acoustic signal discriminants using machine learning. Applied Computer Science, 18(2), 71–85. https://doi.org/10.35784/acs-2022-14
Karpiński, R., Prus, A., Baj, J., Radej, S., Prządka, M., Krakowski, P., & Jonak, K. (2025a). Articular cartilage: Structure, biomechanics, and the potential of conventional and advanced diagnostics. Applied Sciences, 15(12), 6896. https://doi.org/10.3390/app15126896
Karpiński, R., Prus, A., Jonak, K., & Krakowski, P. (2025b). Vibroarthrography as a noninvasive screening method for early diagnosis of knee osteoarthritis: A review of current research. Applied Sciences, 15(1), 279. https://doi.org/10.3390/app15010279
Karpiński, R., Szabelski, J., Krakowski, P., Jonak, J., Falkowicz, K., Jojczuk, M., Nogalski, A., & Przekora, A. (2024a). Effect of various admixtures on selected mechanical properties of medium viscosity bone cements: Part 1 – α/β tricalcium phosphate (TCP). Composite Structures, 343, 118306. https://doi.org/10.1016/j.compstruct.2024.118306
Karpiński, R., Szabelski, J., Krakowski, P., Jonak, J., Falkowicz, K., Jojczuk, M., Nogalski, A., & Przekora, A. (2024b). Effect of various admixtures on selected mechanical properties of medium viscosity bone cements: Part 2 – Hydroxyapatite. Composite Structures, 343, 118308. https://doi.org/10.1016/j.compstruct.2024.118308
Karpiński, R., Szabelski, J., Krakowski, P., Jonak, J., Falkowicz, K., Jojczuk, M., Nogalski, A., & Przekora, A. (2024c). Effect of various admixtures on selected mechanical properties of medium viscosity bone cements: Part 3 – Glassy carbon. Composite Structures, 343, 118307. https://doi.org/10.1016/j.compstruct.2024.118307
Khokhlova, L., Komaris, D.-S., Tedesco, S., & O’Flynn, B. (2021). Assessment of hip and knee joints and implants using acoustic emission monitoring: A scoping review. IEEE Sensors Journal, 21(13), 14379–14388. https://doi.org/10.1109/JSEN.2020.3045203
Kohn, M. D., Sassoon, A. A., & Fernando, N. D. (2016). Classifications in brief: kellgren-lawrence classification of osteoarthritis. Clinical Orthopaedics & Related Research, 474(8), 1886–1893. https://doi.org/10.1007/s11999-016-4732-4
Krakowski, P., Karpiński, R., Jonak, J., & Maciejewski, R. (2021). Evaluation of diagnostic accuracy of physical examination and MRI for ligament and meniscus injuries. Journal of Physics: Conference Series, 1736, 012027. https://doi.org/10.1088/1742-6596/1736/1/012027
Kręcisz, K. (2023). Correlation between linear and non-linear vibroartrographic parameters. Przegląd Elektrotechniczny, 1(7), 182–187. https://doi.org/10.15199/48.2023.07.33
Kulisz, M., Kłosowski, G., Rymarczyk, T., Hoła, A., Niderla, K., & Sikora, J. (2024). The use of the multi-sequential LSTM in electrical tomography for masonry wall moisture detection. Measurement, 234, 114860. https://doi.org/10.1016/j.measurement.2024.114860
Kulisz, M., Kłosowski, G., Rymarczyk, T., Słoniec, J., Gauda, K., & Cwynar, W. (2024). Optimizing the neural network loss function in electrical tomography to increase energy efficiency in industrial reactors. Energies, 17(3), 681. https://doi.org/10.3390/en17030681
Kulisz, M., Kujawska, J., Cioch, M., Cel, W., & Pizoń, J. (2024). Comparative analysis of machine learning methods for predicting energy recovery from waste. Applied Sciences, 14(7), 2997. https://doi.org/10.3390/app14072997
Kwiatkowski, A., Sobolewski, O., Wyłomańska, A., Sawicki, M., Zieleń, P., Druszcz, A., & Ptak, M. (2023). Development of artificial intelligence algorithms to analyse weather conditions for the prediction of cerebrovascular accidents. In H. Podbielska & M. Kapalla (Eds.), Predictive, Preventive, and Personalised Medicine: From Bench to Bedside (Vol. 17, pp. 283–304). Springer International Publishing. https://doi.org/10.1007/978-3-031-34884-6_16
Litak, G., Syta, A., Gajewski, J., & Jonak, J. (2010). Detecting and identifying non-stationary courses in the ripping head power consumption by recurrence plots. Meccanica, 45(4), 603–608. https://doi.org/10.1007/s11012-009-9265-4
Łysiak, A., Bączkowicz, D., Borzucka, D., Szmajda, M., Kawala-Sterniuk, A., Brol, S., Dołęgowski, M., & Mroczka, J. (2025). Regression analysis of the vibroarthrogram in the external load conditions. Advances in Science and Technology Research Journal, 19(10), 238–251. https://doi.org/10.12913/22998624/207975
Machrowska, A., Karpiński, R., Jonak, J., Szabelski, J., & Krakowski, P. (2020a). Numerical prediction of the component-ratio-dependent compressive strength of bone cement. Applied Computer Science, 16(3), 88–101. https://doi.org/10.23743/acs-2020-24
Machrowska, A., Karpiński, R., Maciejewski, M., Jonak, J., & Krakowski, P. (2024a). Application of EEMD-DFA algorithms and ann classification for detection of knee osteoarthritis using vibroarthrography. Applied Computer Science, 20(2), 90–108. https://doi.org/10.35784/acs-2024-18
Machrowska, A., Karpiński, R., Maciejewski, M., Jonak, J., Krakowski, P., & Syta, A. (2024b). Application of recurrence quantification analysis in the detection of osteoarthritis of the knee with the use of vibroarthrography. Advances in Science and Technology Research Journal, 18(5), 19–31. https://doi.org/10.12913/22998624/189512
Machrowska, A., Karpiński, R., Maciejewski, M., Jonak, J., Krakowski, P., & Syta, A. (2025). Multi-scale analysis of knee joint acoustic signals for cartilage degeneration assessment. Sensors, 25(3), 706. https://doi.org/10.3390/s25030706
Machrowska, A., Szabelski, J., Karpiński, R., Krakowski, P., Jonak, J., & Jonak, K. (2020b). Use of deep learning networks and statistical modeling to predict changes in mechanical parameters of contaminated bone cements. Materials, 13(23), 5419. https://doi.org/10.3390/ma13235419
Matthews, E., Waterson, H. B., Phillips, J. R., & Toms, A. D. (2020). Zonal fixation in knee replacement surgery – is there any clinical or biomechanical evidence to justify it? Bone & Joint 360, 9(5), 4–9. https://doi.org/10.1302/2048-0105.95.360801
McPherson, A., McDaid, A. J., & Ward, S. (2024). Toward personalized orthopedic care: Validation of a smart knee brace. Digital Biomarkers, 8(1), 75–82. https://doi.org/10.1159/000538487
Messaoudene, K., & Harrar, K. (2022). A hybrid LBP-HOG model and naive bayes classifier for knee osteoarthritis detection: Data from the osteoarthritis initiative. In B. Lejdel, E. Clementini, & L. Alarabi (Eds.), Artificial Intelligence and Its Applications (Vol. 413, pp. 458–467). Springer International Publishing. https://doi.org/10.1007/978-3-030-96311-8_42
Mitchell, T. M. (2013). Machine learning (Nachdr.). McGraw-Hill.
Mohammadi, S., Salehi, M. A., Jahanshahi, A., Shahrabi Farahani, M., Zakavi, S. S., Behrouzieh, S., Gouravani, M., & Guermazi, A. (2024). Artificial intelligence in osteoarthritis detection: A systematic review and meta-analysis. Osteoarthritis and Cartilage, 32(3), 241–253. https://doi.org/10.1016/j.joca.2023.09.011
Olsson, S., Akbarian, E., Lind, A., Razavian, A. S., & Gordon, M. (2021). Automating classification of osteoarthritis according to Kellgren-Lawrence in the knee using deep learning in an unfiltered adult population. BMC Musculoskeletal Disorders, 22, 844. https://doi.org/10.1186/s12891-021-04722-7
Rangayyan, R. M., Krishnan, S., Bell, G. D., Frank, C. B., & Ladly, K. O. (1997). Parametric representation and screening of knee joint vibroarthrographic signals. IEEE Transactions on Biomedical Engineering, 44(11), 1068–1074. https://doi.org/10.1109/10.641334
Rangayyan, R. M., & Wu, Y. (2009). Analysis of vibroarthrographic signals with features related to signal variability and radial-basis functions. Annals of Biomedical Engineering, 37(1), 156–163. https://doi.org/10.1007/s10439-008-9601-1
Sbriglio, C., Ptak, M., Dymek, M., Sawicki, M., & Kwiatkowski, A. (2025). Modelling and analysis of cerebrospinal fluid flow in the human brain – Is cerebrospinal fluid an effective protective mechanism during high-impact loading? Acta of Bioengineering and Biomechanics, 27(1). https://doi.org/10.37190/ABB-02591-2025-02
Shark, L.-K., Chen, H., & Goodacre, J. (2011). Knee acoustic emission: A potential biomarker for quantitative assessment of joint ageing and degeneration. Medical Engineering & Physics, 33(5), 534–545. https://doi.org/10.1016/j.medengphy.2010.12.009
Slattery, C., & Kweon, C. Y. (2018). Classifications in brief: Outerbridge classification of chondral lesions. Clinical Orthopaedics & Related Research, 476(10), 2101–2104. https://doi.org/10.1007/s11999.0000000000000255
Steinmetz, J. D., Culbreth, G. T., Haile, L. M., Rafferty, Q., Lo, J., Fukutaki, K. G., Cruz, J. A., Smith, A. E., Vollset, S. E., Brooks, P. M., Cross, M., Woolf, A. D., Hagins, H., Abbasi-Kangevari, M., Abedi, A., Ackerman, I. N., Amu, H., Antony, B., Arabloo, J., … Kopec, J. A. (2023). Global, regional, and national burden of osteoarthritis, 1990–2020 and projections to 2050: A systematic analysis for the Global Burden of Disease Study 2021. The Lancet Rheumatology, 5(9), e508–e522. https://doi.org/10.1016/S2665-9913(23)00163-7
Szabelski, J., Karpiński, R., & Machrowska, A. (2022). Application of an artificial neural network in the modelling of heat curing effects on the strength of adhesive joints at elevated temperature with imprecise adhesive mix ratios. Materials, 15(3), 721. https://doi.org/10.3390/ma15030721
Tanaka, N., & Hoshiyama, M. (2012). Vibroarthrography in patients with knee arthropathy. Journal of Back and Musculoskeletal Rehabilitation, 25(2), 117–122. https://doi.org/10.3233/BMR-2012-0319
Wang, Y., Zheng, T., Song, J., & Gao, W. (2021). A novel automatic Knee Osteoarthritis detection method based on vibroarthrographic signals. Biomedical Signal Processing and Control, 68, 102796. https://doi.org/10.1016/j.bspc.2021.102796
Whittingslow, Daniel. C., Jeong, H.-K., Ganti, V. G., Kirkpatrick, N. J., Kogler, G. F., & Inan, O. T. (2020). Acoustic emissions as a non-invasive biomarker of the structural health of the knee. Annals of Biomedical Engineering, 48, 225–235. https://doi.org/10.1007/s10439-019-02333-x
Wipperman, M. F., Lin, A. Z., Gayvert, K. M., Lahner, B., Somersan-Karakaya, S., Wu, X., Im, J., Lee, M., Koyani, B., Setliff, I., Thakur, M., Duan, D., Breazna, A., Wang, F., Lim, W. K., Halasz, G., Urbanek, J., Patel, Y., Atwal, G. S., … Harari, O. (2024). Digital wearable insole-based identification of knee arthropathies and gait signatures using machine learning. eLife, 13, e86132. https://doi.org/10.7554/eLife.86132
Wu, Y., Chen, P., Luo, X., Huang, H., Liao, L., Yao, Y., Wu, M., & Rangayyan, R. M. (2016). Quantification of knee vibroarthrographic signal irregularity associated with patellofemoral joint cartilage pathology based on entropy and envelope amplitude measures. Computer Methods and Programs in Biomedicine, 130, 1–12. https://doi.org/10.1016/j.cmpb.2016.03.021
Zalzal, P., Papini, M., Petruccelli, D., De Beer, J., & Winemaker, M. J. (2004). An in vivo biomechanical analysis of the soft-tissue envelope of osteoarthritic knees. The Journal of Arthroplasty, 19(2), 217–223. https://doi.org/10.1016/j.arth.
Article Details
Abstract views: 26
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
