The modelling of NiTi shape memory alloy functional properties by machine learning methods
Article Sidebar
Open full text
Issue Vol. 21 No. 4 (2025)
-
Real-time detection of seat belt usage in overhead traffic surveillance using YOLOv7
Catur Edi WIDODO, Kusworo ADI, Priyono PRIYONO, Aji SETIAWAN1-12
-
SoundCrafter: Bridging text and Sound with a diffusion model
Haitham ALHAJI, Alaa Yaseen TAQA13-20
-
Application of encoder-based motion analysis and machine learning for knee osteoarthritis detection: A pilot study
Robert KARPIŃSKI, Arkadiusz SYTA21-31
-
SSAtt-SolNet: An efficient model for dusty solar panel classification with Sparse Shuffle and Attention mechanisms
An CONG TRAN, Nghi CONG TRAN32-46
-
IoT-driven environmental optimization for hydroponic lettuce: A data-centric approach to smart agriculture
Okky Putra BARUS, Ade MAULANA, Pujianto YUGOPUSPITO, Achmad Nizar HIDAYANTO, Winar Joko ALEXANDER47-58
-
Computer-Aided System with Machine Learning components for generating medical recommendations for type 1 diabetes patients
Tomasz NOWICKI59-75
-
Interpretable VAE-based predictive modeling for enhanced complex industrial systems dependability in developing countries
Richard NASSO TOUMBA, Maxime MOAMISSOAL SAMUEL, Achille EBOKE, Wangkaké TAIWE, Timothée KOMBE76-97
-
Measuring comparative eco-efficiency in the Eurasian Economic Union using MaxDEA X 12.2 software
Bella GABRIELYAN, Narek KESOYAN, Armen GHAZARYAN, Argam ARTASHYAN98-109
-
K4F-Net: Lightweight multi-view speech emotion recognition with Kronecker convolution and cross-language robustness
Paweł POWROŹNIK, Maria SKUBLEWSKA-PASZKOWSKA110-126
-
The modelling of NiTi shape memory alloy functional properties by machine learning methods
Volodymyr HUTSAYLYUK, Vladyslav DEMCHYK, Oleh YASNIY, Nadiia LUTSYK, Andrii FIIALKA127-135
-
Application of machine learning algorithms for forecasting labour demand in the metallurgical industry of the east Kazakhstan region
Oxana DENISSOVA, Aman ISMUKHAMEDOV, Zhadyra KONURBAYEVA, Saule RAKHMETULLINA, Yelena SAMUSSENKO, Monika KULISZ136-158
-
Evaluating the impact of residual learning and feature fusion on soil moisture prediction accuracy
Pascal YAMAKILI, Mrindoko Rashid NICHOLAUS, Kenedy Aliila GREYSON159-168
Archives
-
Vol. 21 No. 4
2025-12-31 12
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2026-01-08 8
-
Vol. 17 No. 4
2021-12-30 8
-
Vol. 17 No. 3
2021-09-30 8
-
Vol. 17 No. 2
2021-06-30 8
-
Vol. 17 No. 1
2021-03-30 8
Main Article Content
DOI
Authors
Abstract
Shape memory alloys (SMAs) exhibit several unique properties, including superelasticity and the shape memory effect. They can return to their original shape after deformation when heated. SMAs are widely used in various fields of science and technology. Shape memory alloys are functional materials that are used under loading, which in many cases is cyclic in nature. In the present study, the functional properties of NiTi shape memory alloys were modeled using supervised learning methods. The analysis was performed using Orange data mining software, which allows the creation of visual flowcharts and the generation of results in tables and graphs. The modeling was performed on four specimens. For each specimen, several functional properties, such as residual strain range Der and dissipated energy range DWdis. Each data set was divided into two unequal parts - the training and test sets. The training sets comprised 66% of the total data set. The remaining 34% was used for the test set. Among the methods studied, kNN, AdaBoost, Gradient Boosting and Random Forest showed the best results in terms of prediction errors. Therefore, ML learning methods are a powerful and promising tool for solving tasks related to the prediction of functional properties of SMAs.
Keywords:
References
Akima, H. (1970). A new method of interpolation and smooth curve fitting based on local procedures. Journal of the ACM, 17(4), 589–602. https://doi.org/10.1145/321607.321609
Alfonso, G., Zaccagnino, R., Gobbo, E. Del, Garikapati, D., & Sudhir Shetiya, S. (2024). Autonomous vehicles: Evolution of artificial intelligence and the current industry landscape. Big Data and Cognitive Computing, 8(4), 42. https://doi.org/10.3390/BDCC8040042
Basak, D., Pal, S., & Patranabis, D. (2007). Support vector regression. Statistics and Computing, 11(10), 203–209.
Biau, G. (2012). Analysis of a random forests model. Journal of Machine Learning Research, 13(38), 1063–1095.
Boy, A. F., Akhyar, A., Arif, T. Y., & Syahrial, S. (2025). Development of an artificial intelligence model based on MobileNetV3 for early detection of dental caries using smartphone images: A preliminary study. Advances in Science and Technology. Research Journal, 19(4), 109–116. https://doi.org/10.12913/22998624/200308
Burkov, A. (2019). The Hundred-Page Machine Learning Book. Andriy Burkov.
Cabanillas-Carbonell, M., Rivera, J. S., & Muñoz, J. S. (2025). Artificial intelligence in video surveillance systems for suspicious activity detection and incident response: A systematic review. Advances in Science and Technology. Research Journal, 19(3), 389–405. https://doi.org/10.12913/22998624/196795
Chen, H., Engkvist, O., Wang, Y., Olivecrona, M., & Blaschke, T. (2018). The rise of deep learning in drug discovery. Drug Discovery Today, 23(6), 1241–1250. https://doi.org/10.1016/J.DRUDIS.2018.01.039
Cruz, J. A., & Wishart, D. S. (2007). Applications of machine learning in cancer prediction and prognosis. Cancer Informatics, 2, 59. https://doi.org/10.1177/117693510600200030
Dębska, A. A., Gwoździewicz, P., Seruga, A., Balandraud, X., & Destrebecq, J. F. (2021). The application of Ni–Ti SMA wires in the external prestressing of concrete hollow cylinders. Materials, 14(6), 1354. https://doi.org/10.3390/MA14061354
Frankiewicz, P., Góral, T., & Bembenek, M. (2025). Influence of process parameters in tungsten inert gas welding of titanium, supported by you only look once–based defect detection algorithm. Advances in Science and Technology. Research Journal, 19(8), 1–14. https://doi.org/10.12913/22998624/203803
Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-Line learning and an application to boosting. Journal of Computer and System Sciences, 55(1), 119–139. https://doi.org/10.1006/JCSS.1997.1504
Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. The Annals of Statistics, 29(5), 1189–1232. https://doi.org/10.1214/AOS/1013203451
Friedman, J. H. (2002). Stochastic gradient boosting. Computational Statistics & Data Analysis, 38(4), 367–378. https://doi.org/10.1016/S0167-9473(01)00065-2
Gao, H., Kou, G., Liang, H., Zhang, H., Chao, X., Li, C.-C., & Dong, Y. (2024). Machine learning in business and finance: A literature review and research opportunities. Financial Innovation, 10, 86. https://doi.org/10.1186/S40854-024-00629-Z
Habti, W. E., & Azmani, A. (2025). Harnessing multi-source data for AI-driven oncology insights: Productivity, trend, and sentiment analysis. Applied Computer Science, 21(1), 70–82. https://doi.org/10.35784/ACS_6670
Hang, L., Lu, L., & Huanqiang, Z. (2024). Machine Learning Methods (1st ed.). Springer.
He, Z., Lin, D., Lau, T., & Wu, M. (2019). Gradient Boosting Machine: A Survey. ArXiv, abs/1908.06951v1. https://arxiv.org/abs/1908.06951v1
James, I., & Osubor, V. (2025). Machine learning evidence towards eradication of malaria burden: A scoping review. Applied Computer Science, 21(1), 44–69. https://doi.org/10.35784/ACS_6873
Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255–260. https://doi.org/10.1126/SCIENCE.AAA8415
Kelly, B. T., & Xiu, D. (2023). Financial machine learning. SSRN Electronic Journal. https://doi.org/10.2139/SSRN.4501707
Kirda, A. W., Majewski, P., Bursy, G., Bartoszuk, M., Yassin, H., Królczyk, G., Akbar, N. A., & Caesarendra, W. (2025). Integrating YOLOv5, Jetson nano microprocessor, and Mitsubishi robot manipulator for real-time machine vision application in manufacturing: A lab experimental study. Advances in Science and Technology. Research Journal, 19(5), 248–270. https://doi.org/10.12913/22998624/201366
Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521, 436–444. https://doi.org/10.1038/nature14539
Liu, Q., Ghodrat, S., Huisman, G., & Jansen, K. M. B. (2023). Shape memory alloy actuators for haptic wearables: A review. Materials & Design, 233, 112264. https://doi.org/10.1016/J.MATDES.2023.112264
Lu, J. (2022). Gradient Descent, Stochastic Optimization, and Other Tales. ArXiv, abs/2205.00832v2. https://arxiv.org/abs/2205.00832v2
Molod, M. A., Spyridis, P., & Barthold, F. J. (2022). Applications of shape memory alloys in structural engineering focusing on concrete construction – A comprehensive review. Construction and Building Materials, 337, 127565. https://doi.org/10.1016/J.CONBUILDMAT.2022.127565
Natekin, A., & Knoll, A. (2013). Gradient boosting machines: A tutorial. Frontiers in Neurorobotics, 7, 63623. https://doi.org/10.3389/FNBOT.2013.00021/BIBTEX
Pogrebnjak, A. D., Buranich, V. V., Horodek, P., Budzynski, P., Konarski, P., Amekura, H., Okubo, N., Ishikawa, N., Bagdasaryan, A., Rakhadilov, B., Tarelnik, V., Sobaszek, Zukowski, P., & Opielak, M. (2022). Evaluation of the phase stability, microstructure, and defects in high-entropy ceramics after high-energy ion implantation. High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, 26(3), 77–93. https://doi.org/10.1615/HIGHTEMPMATPROC.2022043733
Popovic, M. B., Lamkin-Kennard, K. A., Beckerle, P., & Bowers, M. P. (2019). Actuators. Biomechatronics, 45–79. https://doi.org/10.1016/B978-0-12-812939-5.00003-3
Ravi, S. K., Ravi, S. K., & Prabha, A. H. (2024). The advent of machine learning in autonomous vehicles. International Journal of Science and Research Archive, 13(1), 1219–1226. https://doi.org/10.30574/IJSRA.2024.13.1.1760
Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85–117. https://doi.org/10.1016/J.NEUNET.2014.09.003
Sirmayanti, Prastyo, P. H., Mahyati, & Rahman, F. (2025). A systematic literature review of diabetes prediction using metaheuristic algorithm-based feature selection: Algorithms and challenges method. Applied Computer Science, 21(1), 126–142. https://doi.org/10.35784/ACS_6849
Ślesicka, A., Ślesicki, B., Kawalec, A., Walenczykowska, M., & Krenc, K. (2025). AI-assisted frequency-modulated continuous wave radar for drone detection near runways: Challenges, trends, and research gaps. Advances in Science and Technology. Research Journal, 19(7), 266–279. https://doi.org/10.12913/22998624/203910
Smith, B., & Linden, G. (2017). Two decades of recommender systems at Amazon.com. IEEE Internet Computing, 21(3), 12–18. https://doi.org/10.1109/MIC.2017.72
Srisuradetchai, P., & Suksrikran, K. (2024). Random kernel k-nearest neighbors regression. Frontiers in Big Data, 7, 1402384. https://doi.org/10.3389/FDATA.2024.1402384/BIBTEX
Steck, H., Baltrunas, L., Elahi, E., Liang, D., Raimond, Y., & Basilico, J. (2021). Deep Learning for recommender systems: A Netflix case study. AI Magazine, 42(3), 7–18. https://doi.org/10.1609/AIMAG.V42I3.18140
Sujana, J. A. J., Mystica, I., Jeremiah, R. J., & Stebel, K. (2025). Heart health fog: A deep learning approach leveraging internet of things and fog computing for real-time heart disease prediction. Advances in Science and Technology. Research Journal, 19(7), 406–414. https://doi.org/10.12913/22998624/204392
Świć, A., Gola, A., Sobaszek, Ł., & Šmidová, N. (2021). A thermo-mechanical machining method for improving the accuracy and stability of the geometric shape of long, low-rigidity shafts. Journal of Intelligent Manufacturing, 32, 1939–1951. https://doi.org/10.1007/s10845-020-01733-4
Velychko, D., Osukhivska, H., Palaniza, Y., Lutsyk, N., & Sobaszek, Ł. (2024). Artificial intelligence-based emergency identification computer system. Advances in Science and Technology. Research Journal, 18(2), 296–304. https://doi.org/10.12913/22998624/184343
Wang, B., Zhu, J., Zhong, S., Liang, W., & Guan, C. (2024). Space deployable mechanics: A review of structures and smart driving. Materials & Design, 237, 112557. https://doi.org/10.1016/J.MATDES.2023.112557
Yasniy, O., Demchyk, V., & Lutsyk, N. (2022). Modelling of functional properties of shape-memory alloys by machine learning methods. Scientific Journal of the Ternopil National Technical University, 108(4), 74–78. https://doi.org/10.33108/VISNYK_TNTU2022.04.074
Article Details
Abstract views: 27
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
