Building compartment surface layer with specific properties of radiation absorption and transmission.
Article Sidebar
Open full text
Issue Vol. 1 No. 1 (2007)
-
Analysis influence of Dmax on fracture mechanics parameters of concrete made of limestone aggregate at three point bending.
Grzegorz Golewski005-016
-
Building compartment surface layer with specific properties of radiation absorption and transmission.
Magdalena Grudzińska017-044
-
Durability of mineral-cement-emulsion mixtures bases (MCEM).
Jerzy Kukiełka045-056
-
Mechanical characteristics of Asphalt-Cement Concrete foundations (ACC).
Marzena Bajak057-086
-
The interference galloping of two circular cylinders with equal diameters.
Ewa Błazik-Borowa087-102
-
Aerodynamics of guyed masts
Jarosław Bęc103-118
-
Vortex excitation of tower-like structures of circular cross-sections.
Tomasz Lipecki119-143
Archives
-
Vol. 9 No. 2
2020-12-02 11
-
Vol. 8 No. 1
2020-12-02 9
-
Vol. 7 No. 2
2020-12-02 12
-
Vol. 6 No. 1
2020-12-02 13
-
Vol. 5 No. 2
2020-11-02 7
-
Vol. 4 No. 1
2020-11-02 9
-
Vol. 3 No. 2
2020-11-02 10
-
Vol. 2 No. 1
2020-11-02 9
-
Vol. 1 No. 1
2020-11-02 7
Main Article Content
DOI
Authors
Abstract
The thesis deals with building compartment surface layer, consisting of two components: honeycomb transparent insulation and transparent plaster made of glass beads. The layer enables passive solar gains in a building. The aim of the thesis is as follows: (1) Preparation of mathematical model of solar transmission through the surface layer; (2) Setting of basic optical properties of the layer components, necessary for calculating solar gains at the absorber; (3) Choice of optimal properties of the surface components, allowing maximum solar gains in winter and protecting from overheating in summer. The thesis comprises of: introduction, basic equations and definitions necessary in the work, mathematical model of solar transmission through the surface layer, experimental research on basic optical properties of the layer components, choice of optimal properties of the surface components and conclusions.
Keywords:
References
Braun P.O., Goetzberger A., Schmid J., Stahl W., Transparent insulation of building facades – steps from research to commercial applications, Solar Energy, vol. 49, 1992, s. 413. DOI: https://doi.org/10.1016/0038-092X(92)90113-O
Beckmann P., Spizzichino A., The scattering of electromagnetic waves from rough surfaces, Artech House Inc., 1987.
Burek S.A.M., Norton B., Probert S.D., Transmission and forward scattering of insolation through plastic (transparent and semi-transparent) materials, Solar Energy, vol. 42, 1989, s. 457. DOI: https://doi.org/10.1016/0038-092X(89)90046-7
Dalenbäck J.O., Solar energy in building renovation, Energy and Buildings vol. 24, 1996, s. 39. DOI: https://doi.org/10.1016/0378-7788(95)00962-0
Gawin D., Romanowska A., Klemm P., Wpływ MFZ na pole temperatury w przegrodzie poddanej działaniu promieniowania słonecznego, V Konferencja Naukowo – Techniczna „Fizyka Budowli w Teorii i Praktyce”, Łódź 1995, s. 96.
Hollands K.G.T., Iynkaran K., Ford C., Platzer W.J., Manufacture, solar transmission, and heat transfer characteristics of large-celled honeycomb transparent insulation, Solar Energy, vol. 49, 1992, s. 381. DOI: https://doi.org/10.1016/0038-092X(92)90110-V
Hollands K.G.T., Marshall K.N., Wedel R.K., An approximate equation for predicting the solar transmittance of transparent honeycombs, Solar Energy, vol. 21, 1978, s. 231. DOI: https://doi.org/10.1016/0038-092X(78)90026-9
Hollands K.G.T., Raithby G.D., Russell F.B., Wilkinson R.G., Coupled radiative and conductive heat transfer across honeycomb panels and through single cells, International Journal of Heat and Mass Transfer, vol. 27, 1984, s. 2119. DOI: https://doi.org/10.1016/0017-9310(84)90199-6
Kośny J., Teoretyczna i doświadczalna analiza efektywności przegród kolektorowo-akumulacyjnych, praca doktorska, IPPT PAN, Warszawa 1990.
Laskowski L., Systemy biernego ogrzewania słonecznego. Zagadnienia funkcjonowania i efektywności energetycznej, IPPT PAN, Warszawa 1993.
Lichołai L., Analiza funkcjonowania pasywnych systemów ogrzewania słonecznego i prognozowanie ich efektywności energetycznej, Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów 2000.
Owczarek S., Identyfikacja modelu promieniowania słonecznego dla 10-ciu stacji aktynometrycznych na terenie Polski. Wyniki obliczeń wartości godzinowych i dziennych promieniowania na wybrane płaszczyzny, Prace IPPT PAN, Warszawa 2002.
Owczarek S., Wieloparametrowy model wektorowy gęstości strumienia słonecznego promieniowania na dowolną płaszczyznę, V Konferencja Naukowo – Techniczna „Fizyka Budowli w Teorii i Praktyce”, Łódź 1995, s. 277.
Platzer W.J., Directional-hemispherical solar transmittance data for plastic honeycombtype structures, Solar Energy, vol. 49, 1992, s. 359. DOI: https://doi.org/10.1016/0038-092X(92)90108-M
Platzer W.J., Solar transmission of transparent insulation materials, Solar Energy Materials, vol. 16, 1987, s. 275. DOI: https://doi.org/10.1016/0165-1633(87)90027-X
Sala A., Radiacyjna wymiana ciepła, Wydawnictwa Naukowo – Techniczne, Warszawa 1982.
Stahl W., Voss K., Goetzberger A., The self-sufficient solar house in Freiburg, Solar Energy, vol. 52, 1994, s. 111. DOI: https://doi.org/10.1016/0038-092X(94)90085-G
Starakiewicz A., Funkcjonowanie przegród kolektorowo-akumulacyjnych w polskich warunkach klimatycznych, praca doktorska, IPPT PAN, Warszawa 1992.
Symons J.G., Calculation of the transmittance-absorptance product for flat-plate collectors with convection suppression devices, Solar Energy, vol. 33, 1984, s. 637. DOI: https://doi.org/10.1016/0038-092X(84)90023-9
Torrance K.E., Sparrow E.M., Biangular reflectance of an electric nonconductor as a function of wavelength and surface roughness, Journal of Heat Transfer, vol. 87, 1965, s.283. DOI: https://doi.org/10.1115/1.3689091
Twidell J.W., Johnstone C.M., Zuhdy B., Scott A., Strathclyde University’s passive solar, low-energy, residences with transparent insulation, Solar Energy, vol. 52, 1994, s. 85. DOI: https://doi.org/10.1016/0038-092X(94)90084-F
Voss K., Solar energy in building renovation – results and experience of international demonstration buildings, Energy and Buildings, vol. 32, 2000, s. 291. DOI: https://doi.org/10.1016/S0378-7788(00)00052-9
Article Details
Abstract views: 267
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Budownictwo i Architektura supports the open science program. The journal enables Open Access to their publications. Everyone can view, download and forward articles, provided that the terms of the license are respected.
Publishing of articles is possible after submitting a signed statement on the transfer of a license to the Journal.
