Improving the properties of clay soils in foundations through compaction and the integration of fibres and cement
Article Sidebar
Open full text
Issue Vol. 23 No. 4 (2024)
-
Architecture of the administrative centre of Kharkiv, the capital – laboratory for the creation of the New Man: from concept to implementation
Kateryna Didenko, Olena Gella005-023
-
Difficulties in rebuilding historic bridges after conflicts: the case of the Mosul stone bridge
Emad Ismaeel, Mahmood Alabaachi024-040
-
Dynamic similarity criteria for simple cases of buildings and structures aerodynamics
Andrzej Flaga, Łukasz Flaga041-062
-
Concrete production using marble powder and marble coarse aggregates: an analysis of mechanical properties and sustainability
Saloua Filali, Abdelkader Nasser063-081
-
Evaluation of lime plaster on masonry walls in historical buildings prior to renovation
Adrian Chajec, Anna Hoła, Jerzy Hoła, Łukasz Sadowski083-090
-
Interlocking passive brick set: the design of interlocking building components with connecting air cavities for heat dissipation and as a complement to the Heating, Ventilation, and Air Conditioning (HVAC) system
Kongphat Phaiboonnukulkij091-111
-
Methods for conducting analysis, planning, and preservation of the historical and cultural potential of urban riverside areas
Liudmyla Ruban113-127
-
Improving the properties of clay soils in foundations through compaction and the integration of fibres and cement
Abdelkader Fidjah, Mohamed Rabehi, Cheikh Kezrane, Asma Bendeb, Nour Elhouda Smain, Rachid Khalili129-149
-
The use of digital technologies in assessing the technical condition of historic structures
Bartosz Szostak, Michał Wac151-172
-
Management of energy renovation for traditional rural residential houses
Magdalena Szarejko173-190
-
Control of building safety through snow load monitoring
Roman Kinasz, Wiesław Bereza191-204
Archives
-
Vol. 24 No. 3
2025-09-30 13
-
Vol. 24 No. 2
2025-06-25 13
-
Vol. 24 No. 1
2025-03-31 12
-
Vol. 23 No. 4
2025-01-02 11
-
Vol. 23 No. 3
2024-10-07 10
-
Vol. 23 No. 2
2024-06-15 8
-
Vol. 23 No. 1
2024-03-29 6
-
Vol. 22 No. 4
2023-12-29 9
-
Vol. 22 No. 3
2023-09-29 5
-
Vol. 22 No. 2
2023-06-30 3
-
Vol. 22 No. 1
2023-03-30 3
-
Vol. 21 No. 4
2022-12-14 8
-
Vol. 21 No. 3
2022-11-02 3
-
Vol. 21 No. 2
2022-08-31 3
-
Vol. 21 No. 1
2022-03-30 3
-
Vol. 19 No. 4
2020-11-02 11
-
Vol. 19 No. 3
2020-09-30 11
-
Vol. 19 No. 2
2020-06-30 10
-
Vol. 19 No. 1
2020-06-02 8
Main Article Content
DOI
Authors
Abstract
Clay soils present significant challenges in engineering applications, particularly in the design and construction of foundations, due to their susceptibility to swelling and shrinkage. This research investigates the enhancement of clay soils through the incorporation of fibres, compaction, and cement, based on a comprehensive series of tests conducted at the Public Works Laboratory in Adrar, southern Algeria. The tests adhered strictly to technical standards in soil mechanics, examining the physical, mechanical, and thermal properties of the clay soil. The results demonstrated that applying a compressive strength of 2.5 MPa and incorporating palm and glass fibres in proportions ranging from 0% to 0.3% reduced bulk density by 0.95% to 7%. The capillary water absorption rate increased by 10.61% to 12.63%, while compressive strength improved by 11.4% to 34.37%. Furthermore, thermal conductivity decreased by 0.71% to 11.9%. These findings provide valuable insights into the properties of clay soils and the observed improvements. It can be concluded that soil enhancement through various materials and fibres is viable and yields positive outcomes in geotechnical applications.
Keywords:
References
[1] Lahbabi S., Bouferra R., Saadi L., Khalil A., “Study of the physicochemical, mineralogical, and geotechnical properties of clayey soils to improve the durability of eco-construction materials in the rural region”, Construction and Building Materials, vol. 411, (2024), 134304. https://doi.org/10.1016/j.conbuildmat.2023.134304 DOI: https://doi.org/10.1016/j.conbuildmat.2023.134304
[2] Tang Q., Sun C., Chen Y., Guo W., Jia R., Gao H., Xu X., “Impact of clay on the decompositional mechanical properties of clayey silt hydrate sediments”, Energy & Fuels, vol. 38(8), (2024), 6834-6843. https://doi.org/10.1021/acs.energyfuels.3c04911 DOI: https://doi.org/10.1021/acs.energyfuels.3c04911
[3] Estabragh A. R., Jahani A., Javadi A. A., Babalar M., „Assessment of different agents for stabilisation of a clay soil”, International Journal of Pavement Engineering, vol. 23(2), (2022), 160-170. https://doi.org/10.1080/10298436.2020.1736293 DOI: https://doi.org/10.1080/10298436.2020.1736293
[4] Mishra M., Lourenço P. B., Ramana G. V., “Structural health monitoring of civil engineering structures by using the internet of things: A review”, Journal of Building Engineering, 48, (2022), 103954. https://doi.org/10.1016/j.jobe.2021.103954 DOI: https://doi.org/10.1016/j.jobe.2021.103954
[5] Salih N. B., “Geotechnical characteristics correlations for fine-grained soils”, In IOP Conference Series: Materials Science and Engineering, vol. 737(1), (2020), 012099). https://doi.org/10.1088/1757-899X/737/1/012099 DOI: https://doi.org/10.1088/1757-899X/737/1/012099
[6] ElMouchi A., Siddiqua S., Wijewickreme D., Polinder H., “A review to develop new correlations for geotechnical properties of organic soils”, Geotechnical and Geological Engineering, vol. 39, (2021), 3315-3336. https://doi.org/10.1007/s10706-021-01723-0 DOI: https://doi.org/10.1007/s10706-021-01723-0
[7] Soltani A., Deng A., Taheri A., O'Kelly B. C., “Intermittent swelling and shrinkage of a highly expansive soil treated with polyacrylamide”, Journal of Rock Mechanics and Geotechnical Engineering, vol. 14(1), (2022), 252-261. https://doi.org/10.1016/j.jrmge.2021.04.009 DOI: https://doi.org/10.1016/j.jrmge.2021.04.009
[8] Louafi B., Hadef B., Bahar R., “Improvement of geotechnical characteristics of clay soils using lime”, Advanced materials research, vol. 1105, (2015), 315-319. https://doi.org/10.4028/www.scientific.net/AMR.1105.315 DOI: https://doi.org/10.4028/www.scientific.net/AMR.1105.315
[9] Yousefi A., Jahanian H., Azadi M., „Effect of adding cement and nanocement on mechanical properties of clayey soil”, The European Physical Journal Plus, vol. 135(8), (2020), 649. https://doi.org/10.1140/epjp/s13360-020-00639-7 DOI: https://doi.org/10.1140/epjp/s13360-020-00639-7
[10] Estabragh A. R., Bordbar A. T., Javadi A. A., “Mechanical behavior of a clay soil reinforced with nylon fibers”, Geotechnical and Geological Engineering, vol. 29, (2011), 899-908. https://doi.org/10.1007/s10706-011-9427-8 DOI: https://doi.org/10.1007/s10706-011-9427-8
[11] Bao X., Huang Y., Jin Z., Xiao X., Tang W., Cui H., Chen X., “Experimental investigation on mechanical properties of clay soil reinforced with carbon fiber”, Construction and Building Materials, vol. 280, (2021), 122517. https://doi.org/10.1016/j.conbuildmat.2021.122517 DOI: https://doi.org/10.1016/j.conbuildmat.2021.122517
[12] Butt W. A., Mir B. A., Jha J. N., “Strength behavior of clayey soil reinforced with human hair as a natural fibre”, Geotechnical and Geological Engineering, vol. 34, (2016), 411-417. https://doi.org/10.1007/s10706-015-9953-x DOI: https://doi.org/10.1007/s10706-015-9953-x
[13] Gul N., Mir B. A., “Performance evaluation of silty soil reinforced with glass fiber and cement kiln dust for subgrade applications”, Construction and Building Materials, vol. 392, (2023), 131943. https://doi.org/10.1016/j.conbuildmat.2023.131943 DOI: https://doi.org/10.1016/j.conbuildmat.2023.131943
[14] Asadi R., Mirghasemi A. A., „Numerical investigation of particle shape on mechanical behaviour of unsaturated granular soils using elliptical particles”, Advanced Powder Technology, vol. 29(12), (2018), 3087-3099. https://doi.org/10.1016/j.apt.2018.08.018 DOI: https://doi.org/10.1016/j.apt.2018.08.018
[15] Ruiz G., Zhang X., Edris W. F., Cañas I., Garijo L., “A comprehensive study of mechanical properties of compressed earth blocks”, Construction and Building Materials, vol. 176, (2018), 566-572. https://doi.org/10.1016/j.conbuildmat.2018.05.077 DOI: https://doi.org/10.1016/j.conbuildmat.2018.05.077
[16] Wachira K. T., Optimization of soil-lime and cement mixes for compressed earth stabilized blocks for low-cost housing in East Africa (Kenya). Doctoral dissertation, University of Missouri-Kansas City.
[17] Fernandes J., Peixoto M., Mateus R., Gervásio H., “Life cycle analysis of environmental impacts of earthen materials in the Portuguese context: Rammed earth and compressed earth blocks”, Journal of Cleaner Production, vol. 241, (2019), 118286. https://doi.org/10.1016/j.jclepro.2019.118286 DOI: https://doi.org/10.1016/j.jclepro.2019.118286
[18] Zidan A. F., “Strength and consolidation characteristics for cement stabilized cohesive soil considering consistency index”, Geotechnical and Geological Engineering, vol. 38(5), (2020), 5341-5353. https://doi.org/10.1007/s10706-020-01367-6
[19] Hassan W., Farooq K., Mujtaba H., Alshameri B., Shahzad A., Nawaz M. N., Azab M., “Experimental investigation of mechanical behavior of geosynthetics in different soil plasticity indexes”, Transportation Geotechnics, vol. 39, (2023), 100935. https://doi.org/10.1016/j.trgeo.2023.100935 DOI: https://doi.org/10.1016/j.trgeo.2023.100935
[20] O’Kelly B. C., “Review of recent developments and understanding of Atterberg limits determinations”, Geotechnics, vol. 1(1), (2021), 59-75. https://doi.org/10.3390/geotechnics1010004 DOI: https://doi.org/10.3390/geotechnics1010004
[21] Cil M. B., Sohn C., Buscarnera G., “DEM modeling of grain size effect in brittle granular soils”, Journal of Engineering Mechanics, vol. 146(3), (2020), 04019138. https://doi.org/10.1061/(ASCE)EM.1943-7889.000171 DOI: https://doi.org/10.1061/(ASCE)EM.1943-7889.0001713
[22] Shivaprakash S. H., Sridharan A., “Correlation of compaction characteristics of standard and reduced Proctor tests”, Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, vol. 174(2), (2021), 170-180. https://doi.org/10.1680/jgeen.20.00060 DOI: https://doi.org/10.1680/jgeen.20.00060
[23] Abbou M., Semcha A., Aoual F. K., “Physico-mechanical characterization and durability of stabilized compressed earth bricks in the region of Timimoun in southwestern Algeria”, Journal of Materials and Engineering Structures «JMES», vol. 8(2), (2021), 287-300.
[24] Zidan A. F., “Strength and consolidation characteristics for cement stabilized cohesive soil considering consistency index”, Geotechnical and Geological Engineering, vol. 38(5), (2020), 5341-5353. https://doi.org/10.1007/s10706-020-01367-6 DOI: https://doi.org/10.1007/s10706-020-01367-6
[25] Sinha P., Iyer K. K., “Effect of stabilization on characteristics of subgrade soil: a review”, In: Prashant A., Sachan A., Desai C. (eds) Advances in Computer Methods and Geomechanics. Lecture Notes in Civil Engineering, vol 55. Springer, Singapore. https://doi.org/10.1007/978-981-15-0886-8_54 DOI: https://doi.org/10.1007/978-981-15-0886-8_54
[26] Safi W., Singh S., “Efficient & effective improvement and stabilization of clay soil with waste materials”, Materials Today: Proceedings, vol. 51, (2022), 947-955. https://doi.org/10.1016/j.matpr.2021.06.333 DOI: https://doi.org/10.1016/j.matpr.2021.06.333
[27] Labiad Y., Meddah A., Beddar M., Pantelidis L., “Study on characterization, mechanical, and thermal properties of Alfa fiber–reinforced compressed earth blocks incorporating crushed brick waste”, Arabian Journal of Geosciences, vol. 16(10), (2023), 575. https://doi.org/10.1007/s12517-023-11695-5
[28] Abdelkader F, Mohamed R, Cheikh K, Rabehi R., “Mechanical properties of compressed earth blocks reinforced with glass fibers and palm fibers: Experiments and simulation”, The Journal of Engineering and Exact Sciences, vol. 9(5), (2023) 15916-01e. https://doi.org/10.18540/jcecvl9iss5pp15916-01e DOI: https://doi.org/10.18540/jcecvl9iss5pp15916-01e
[29] Sujatha E. R., Atchaya P., Darshan S., Subhashini S., ‘Mechanical properties of glass fibre reinforced soil and its application as subgrade reinforcement”, Road Materials and Pavement Design, vol. 22, (2021), 2384-2395. https://doi.org/10.1080/14680629.2020.1746387 DOI: https://doi.org/10.1080/14680629.2020.1746387
[30] Yilmaz Y., “Compaction and strength characteristics of fly ash and fiber amended clayey soil”, Engineering Geology, vol. 188, (2015), 168-177. https://doi.org/10.1016/j.enggeo.2015.01.018 DOI: https://doi.org/10.1016/j.enggeo.2015.01.018
[31] Yilmaz Y., Kheirjouy A. B., Akgungor A. P., “Investigation of the effect of different saturation methods on the undrained shear strength of a clayey soil compacted with standard and modified proctor energies”, Periodica Polytechnica Civil Engineering, vol. 60(3), (2016), 323-329. https://doi.org/10.3311/PPci.8891 DOI: https://doi.org/10.3311/PPci.8891
[32] Hamdan M. H. M., Siregar J. P., Cionita T., Jaafar J., Efriyohadi A., Junid R., Kholil A., “Water absorption behaviour on the mechanical properties of woven hybrid reinforced polyester composites”, The International Journal of Advanced Manufacturing Technology, vol. 104, (2019), 1075-1086. https://doi.org/10.1007/s00170-019-03976-9 DOI: https://doi.org/10.1007/s00170-019-03976-9
[33] Rubio C. M., “A laboratory procedure to determine the thermal properties of silt loam soils based on ASTM D 5334”, Applied Ecology and Environmental Sciences, vol.1(4), (2013), 45-48. DOI: https://doi.org/10.12691/aees-1-4-2
[34] Chen X., Liu Y., Finite element modeling and simulation with ANSYS Workbench. CRC press, 2018. DOI: https://doi.org/10.1201/9781351045872
[35] Mostafa M., Uddin N., “Experimental analysis of Compressed Earth Block (CEB) with banana fibers resisting flexural and compression forces”, Case Studies in Construction Materials, vol. 5, (2016), 53-63. https://doi.org/10.1016/j.cscm.2016.07.001 DOI: https://doi.org/10.1016/j.cscm.2016.07.001
[36] Atiki E., Taallah B., Feia S., Almeasar K. S., Guettala A., “Effects of incorporating date palm waste as a thermal insulating material on the physical properties and mechanical behavior of compressed earth block”, Journal of Natural Fibers, vol. 19(14), (2022), 8778-8795. https://doi.org/10.1080/15440478.2021.1967831 DOI: https://doi.org/10.1080/15440478.2021.1967831
[37] Mohamed A. E. M. K., “Improvement of swelling clay properties using hay fibers”, Construction and Building Materials, vol. 38, (2013), 242-247. https://doi.org/10.1016/j.conbuildmat.2012.08.031 DOI: https://doi.org/10.1016/j.conbuildmat.2012.08.031
[38] El Ahmad M., Najjar S., Sadek S., “Drained triaxial response of natural clay reinforced with natural hemp fibers”, International Journal of Geomechanics, vol. 24(7), (2024), 04024123. https://doi.org/10.1061/IJGNAI.GMENG-9190 DOI: https://doi.org/10.1061/IJGNAI.GMENG-9190
[39] Zhang S., He P., Niu L., “Mechanical properties and permeability of fiber-reinforced concrete with recycled aggregate made from waste clay brick”, Journal of Cleaner Production, vol. 268, (2020), 121690. https://doi.org/10.1016/j.jclepro.2020.121690 DOI: https://doi.org/10.1016/j.jclepro.2020.121690
[40] Limami H., Manssouri I., Cherkaoui K., Khaldoun A., “Mechanical and physicochemical performances of reinforced unfired clay bricks with recycled Typha-fibers waste as a construction material additive”, Cleaner Engineering and Technology, vol. 2, (2021), 100037. https://doi.org/10.1016/j.clet.2020.100037 DOI: https://doi.org/10.1016/j.clet.2020.100037
[41] Liu L., Liu J., Xiao Z., „Investigation on soil water retention characteristics and tensile strength of phyllite residual soil reinforced with polypropylene fibers”, Construction and Building Materials, 444, 137544. https://doi.org/10.1016/j.conbuildmat.2024.137544 DOI: https://doi.org/10.1016/j.conbuildmat.2024.137544
[42] Idder A., Hamouine A., Labbaci B., Abdeldjebar R., “The porosity of stabilized earth blocks with the addition plant fibers of the date palm”, Civil Engineering Journal, vol. 6(3), (2020), 478-494. https://doi.org/10.28991/cej-2020-03091485 DOI: https://doi.org/10.28991/cej-2020-03091485
[43] Abessolo D., Biwole A. B., Fokwa D., Ganou Koungang B. M., Baah Y. B., “Physical, mechanical and hygroscopic behaviour of compressed earth blocks stabilized with cement and reinforced with bamboo fibres”, International Journal of Engineering Research in Africa, vol. 59, (2022), 29-41. https://doi.org/10.4028/p-spbskv DOI: https://doi.org/10.4028/p-spbskv
[44] Teixeira E. R., Machado G. P., Junior A. D., Guarnier C., Fernandes J., Silva S. M., Mateus R., “Mechanical and thermal performance characterisation of compressed earth blocks”, Energies, vol. 13(11), (2020), 2978. https://doi.org/10.3390/en13112978 DOI: https://doi.org/10.3390/en13112978
[45] Yazici M. F., Keskin S. N., „Enhancing mechanical properties of low plasticity clay soil using hemp fibers: effects of fiber content and fiber surface coating”, Iranian Journal of Science and Technology, Transactions of Civil Engineering, vol. 48(2), (2024), 961-975. https://doi.org/10.1007/s40996-023-01208-5 DOI: https://doi.org/10.1007/s40996-023-01208-5
[46] Salimi M., Payan M., Hosseinpour I., Arabani M., Ranjbar P. Z., “Effect of glass fiber (GF) on the mechanical properties and freeze-thaw (FT) durability of lime-nanoclay (NC)-stabilized marl clayey soil”, Construction and Building Materials, vol. 416, (2024),135227. https://doi.org/10.1016/j.conbuildmat.2024.135227 DOI: https://doi.org/10.1016/j.conbuildmat.2024.135227
[47] Topçuoğlu Y. A., Gürocak Z., “Increasing strength of clay soils with the use of basalt fiber: an experimental study”, Turkish Journal of Science and Technology, vol. 19(1), (2024), 87-96. https://doi.org/10.55525/tjst.1398354 DOI: https://doi.org/10.55525/tjst.1398354
[48] Donkor P., Obonyo E., “Earthen construction materials: Assessing the feasibility of improving strength and deformability of compressed earth blocks using polypropylene fibers”, Materials & Design, vol. 83, (2015), 813-819. https://doi.org/10.1016/j.matdes.2015.06.017 DOI: https://doi.org/10.1016/j.matdes.2015.06.017
[49] Labiad Y., Meddah A., Beddar M., Pantelidis L., “Study on characterization, mechanical, and thermal properties of Alfa fiber–reinforced compressed earth blocks incorporating crushed brick waste”, Arabian Journal of Geosciences, vol. 16(10), (2023), 575. https://doi.org/10.1007/s12517-023-11695-5 DOI: https://doi.org/10.1007/s12517-023-11695-5
[50] Madrid R., Mechan V., Asto L., Barboza C., Seclen K., “Influence of fibres on the resilient modulus and expansion of clayey subgrade soils”, International Journal of Pavement Engineering, vol. 25(1), (2024), 2298262. https://doi.org/10.1080/10298436.2023.2298262 DOI: https://doi.org/10.1080/10298436.2023.2298262
[51] Pushpakumara B. H. J., Hewawaduge T. R., „Effect of banana fibre and lime on mechanical and thermal properties of unburnt clay bricks”, Australian Journal of Civil Engineering, vol. 22(1), (2024), 37-46. https://doi.org/10.1080/14488353.2022.2114639 DOI: https://doi.org/10.1080/14488353.2022.2114639
[52] Berrehail T., Zemmouri N., Agoudjil B., “Thermal conductivity of cement stabilized earth bricks reinforced with date palm fiber”, In AIP Conference Proceedings, vol. 1968(1), (2018), 030036. https://doi.org/10.1063/1.5039223 DOI: https://doi.org/10.1063/1.5039223
[53] El-yahyaoui A., Manssouri I., Lehleh Y., Sahbi H., Limami H., “Enhancing the mechanical and thermal insulation properties of clay-based construction materials with neutral carbon footprint through the use of Doum fibers”, Materials Chemistry and Physics, vol. 314, (2024), 128774. https://doi.org/10.1016/j.matchemphys.2023.128774 DOI: https://doi.org/10.1016/j.matchemphys.2023.128774
[54] Khoudja D., Taallah B., Izemmouren O., Aggoun S., Herihiri O., Guettala A., “Mechanical and thermophysical properties of raw earth bricks incorporating date palm waste”, Construction and Building Materials, vol. 270, (2021), 121824. https://doi.org/10.1016/j.conbuildmat.2020.121824 DOI: https://doi.org/10.1016/j.conbuildmat.2020.121824
[55] Ghailane H., Ahamat M. A., Padzi M. M., Beddu S., “Steady-state heat flow through hollow clay bricks”, In IOP Conference Series: Materials Science and Engineering, vol. 834(1), (2020), 012021. https://doi.org/10.1088/1757-899X/834/1/012021 DOI: https://doi.org/10.1088/1757-899X/834/1/012021
[56] Doubi H. G., Kouamé A. N., Konan L. K., Tognonvi M., Oyetola S., “Thermal conductivity of compressed earth bricks strengthening by shea butter wastes with cement”, Materials Sciences and Applications, vol. 8(12), (2017), 848. https://doi.org/10.4236/msa.2017.812062 DOI: https://doi.org/10.4236/msa.2017.812062
Article Details
Abstract views: 369
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Budownictwo i Architektura supports the open science program. The journal enables Open Access to their publications. Everyone can view, download and forward articles, provided that the terms of the license are respected.
Publishing of articles is possible after submitting a signed statement on the transfer of a license to the Journal.
