Improving the properties of clay soils in foundations through compaction and the integration of fibres and cement

Abdelkader Fidjah

fidjah.abdelkader@gmail.com
Laboratory of Development in Mechanics and Materials (LDMM); University of Djelfa; (Algeria)

Mohamed Rabehi


Civil Engineering Department; University of Djelfa; (Algeria)
https://orcid.org/0000-0002-3094-1720

Cheikh Kezrane


Laboratory of Development in Mechanics and Materials (LDMM); University of Djelfa; (Algeria)

Asma Bendeb


Process Engineering Lab Laghouat; University Algeria; (Algeria)
https://orcid.org/0009-0007-7297-2174

Nour Elhouda Smain


Faculty of Engineering; Djelfa University; (Algeria)

Rachid Khalili


Laboratory of Paleontology, Stratigraphy and Paleo Environments; Faculty of Earth Sciences and Universe; University of Oran; (Algeria)
https://orcid.org/0000-0002-2434-8058

Abstract

Clay soils present significant challenges in engineering applications, particularly in the design and construction of foundations, due to their susceptibility to swelling and shrinkage. This research investigates the enhancement of clay soils through the incorporation of fibres, compaction, and cement, based on a comprehensive series of tests conducted at the Public Works Laboratory in Adrar, southern Algeria. The tests adhered strictly to technical standards in soil mechanics, examining the physical, mechanical, and thermal properties of the clay soil. The results demonstrated that applying a compressive strength of 2.5 MPa and incorporating palm and glass fibres in proportions ranging from 0% to 0.3% reduced bulk density by 0.95% to 7%. The capillary water absorption rate increased by 10.61% to 12.63%, while compressive strength improved by 11.4% to 34.37%. Furthermore, thermal conductivity decreased by 0.71% to 11.9%. These findings provide valuable insights into the properties of clay soils and the observed improvements. It can be concluded that soil enhancement through various materials and fibres is viable and yields positive outcomes in geotechnical applications.

Supporting Agencies

Compact earth block, Compressive strength, Fibers, Physical and mechanical properties, Thermal properties


[1] Lahbabi S., Bouferra R., Saadi L., Khalil A., “Study of the physicochemical, mineralogical, and geotechnical properties of clayey soils to improve the durability of eco-construction materials in the rural region”, Construction and Building Materials, vol. 411, (2024), 134304. https://doi.org/10.1016/j.conbuildmat.2023.134304
DOI: https://doi.org/10.1016/j.conbuildmat.2023.134304   Google Scholar

[2] Tang Q., Sun C., Chen Y., Guo W., Jia R., Gao H., Xu X., “Impact of clay on the decompositional mechanical properties of clayey silt hydrate sediments”, Energy & Fuels, vol. 38(8), (2024), 6834-6843. https://doi.org/10.1021/acs.energyfuels.3c04911
DOI: https://doi.org/10.1021/acs.energyfuels.3c04911   Google Scholar

[3] Estabragh A. R., Jahani A., Javadi A. A., Babalar M., „Assessment of different agents for stabilisation of a clay soil”, International Journal of Pavement Engineering, vol. 23(2), (2022), 160-170. https://doi.org/10.1080/10298436.2020.1736293
DOI: https://doi.org/10.1080/10298436.2020.1736293   Google Scholar

[4] Mishra M., Lourenço P. B., Ramana G. V., “Structural health monitoring of civil engineering structures by using the internet of things: A review”, Journal of Building Engineering, 48, (2022), 103954. https://doi.org/10.1016/j.jobe.2021.103954
DOI: https://doi.org/10.1016/j.jobe.2021.103954   Google Scholar

[5] Salih N. B., “Geotechnical characteristics correlations for fine-grained soils”, In IOP Conference Series: Materials Science and Engineering, vol. 737(1), (2020), 012099). https://doi.org/10.1088/1757-899X/737/1/012099
DOI: https://doi.org/10.1088/1757-899X/737/1/012099   Google Scholar

[6] ElMouchi A., Siddiqua S., Wijewickreme D., Polinder H., “A review to develop new correlations for geotechnical properties of organic soils”, Geotechnical and Geological Engineering, vol. 39, (2021), 3315-3336. https://doi.org/10.1007/s10706-021-01723-0
DOI: https://doi.org/10.1007/s10706-021-01723-0   Google Scholar

[7] Soltani A., Deng A., Taheri A., O'Kelly B. C., “Intermittent swelling and shrinkage of a highly expansive soil treated with polyacrylamide”, Journal of Rock Mechanics and Geotechnical Engineering, vol. 14(1), (2022), 252-261. https://doi.org/10.1016/j.jrmge.2021.04.009
DOI: https://doi.org/10.1016/j.jrmge.2021.04.009   Google Scholar

[8] Louafi B., Hadef B., Bahar R., “Improvement of geotechnical characteristics of clay soils using lime”, Advanced materials research, vol. 1105, (2015), 315-319. https://doi.org/10.4028/www.scientific.net/AMR.1105.315
DOI: https://doi.org/10.4028/www.scientific.net/AMR.1105.315   Google Scholar

[9] Yousefi A., Jahanian H., Azadi M., „Effect of adding cement and nanocement on mechanical properties of clayey soil”, The European Physical Journal Plus, vol. 135(8), (2020), 649. https://doi.org/10.1140/epjp/s13360-020-00639-7
DOI: https://doi.org/10.1140/epjp/s13360-020-00639-7   Google Scholar

[10] Estabragh A. R., Bordbar A. T., Javadi A. A., “Mechanical behavior of a clay soil reinforced with nylon fibers”, Geotechnical and Geological Engineering, vol. 29, (2011), 899-908. https://doi.org/10.1007/s10706-011-9427-8
DOI: https://doi.org/10.1007/s10706-011-9427-8   Google Scholar

[11] Bao X., Huang Y., Jin Z., Xiao X., Tang W., Cui H., Chen X., “Experimental investigation on mechanical properties of clay soil reinforced with carbon fiber”, Construction and Building Materials, vol. 280, (2021), 122517. https://doi.org/10.1016/j.conbuildmat.2021.122517
DOI: https://doi.org/10.1016/j.conbuildmat.2021.122517   Google Scholar

[12] Butt W. A., Mir B. A., Jha J. N., “Strength behavior of clayey soil reinforced with human hair as a natural fibre”, Geotechnical and Geological Engineering, vol. 34, (2016), 411-417. https://doi.org/10.1007/s10706-015-9953-x
DOI: https://doi.org/10.1007/s10706-015-9953-x   Google Scholar

[13] Gul N., Mir B. A., “Performance evaluation of silty soil reinforced with glass fiber and cement kiln dust for subgrade applications”, Construction and Building Materials, vol. 392, (2023), 131943. https://doi.org/10.1016/j.conbuildmat.2023.131943
DOI: https://doi.org/10.1016/j.conbuildmat.2023.131943   Google Scholar

[14] Asadi R., Mirghasemi A. A., „Numerical investigation of particle shape on mechanical behaviour of unsaturated granular soils using elliptical particles”, Advanced Powder Technology, vol. 29(12), (2018), 3087-3099. https://doi.org/10.1016/j.apt.2018.08.018
DOI: https://doi.org/10.1016/j.apt.2018.08.018   Google Scholar

[15] Ruiz G., Zhang X., Edris W. F., Cañas I., Garijo L., “A comprehensive study of mechanical properties of compressed earth blocks”, Construction and Building Materials, vol. 176, (2018), 566-572. https://doi.org/10.1016/j.conbuildmat.2018.05.077
DOI: https://doi.org/10.1016/j.conbuildmat.2018.05.077   Google Scholar

[16] Wachira K. T., Optimization of soil-lime and cement mixes for compressed earth stabilized blocks for low-cost housing in East Africa (Kenya). Doctoral dissertation, University of Missouri-Kansas City.
  Google Scholar

[17] Fernandes J., Peixoto M., Mateus R., Gervásio H., “Life cycle analysis of environmental impacts of earthen materials in the Portuguese context: Rammed earth and compressed earth blocks”, Journal of Cleaner Production, vol. 241, (2019), 118286. https://doi.org/10.1016/j.jclepro.2019.118286
DOI: https://doi.org/10.1016/j.jclepro.2019.118286   Google Scholar

[18] Zidan A. F., “Strength and consolidation characteristics for cement stabilized cohesive soil considering consistency index”, Geotechnical and Geological Engineering, vol. 38(5), (2020), 5341-5353. https://doi.org/10.1007/s10706-020-01367-6
  Google Scholar

[19] Hassan W., Farooq K., Mujtaba H., Alshameri B., Shahzad A., Nawaz M. N., Azab M., “Experimental investigation of mechanical behavior of geosynthetics in different soil plasticity indexes”, Transportation Geotechnics, vol. 39, (2023), 100935. https://doi.org/10.1016/j.trgeo.2023.100935
DOI: https://doi.org/10.1016/j.trgeo.2023.100935   Google Scholar

[20] O’Kelly B. C., “Review of recent developments and understanding of Atterberg limits determinations”, Geotechnics, vol. 1(1), (2021), 59-75. https://doi.org/10.3390/geotechnics1010004
DOI: https://doi.org/10.3390/geotechnics1010004   Google Scholar

[21] Cil M. B., Sohn C., Buscarnera G., “DEM modeling of grain size effect in brittle granular soils”, Journal of Engineering Mechanics, vol. 146(3), (2020), 04019138. https://doi.org/10.1061/(ASCE)EM.1943-7889.000171
DOI: https://doi.org/10.1061/(ASCE)EM.1943-7889.0001713   Google Scholar

[22] Shivaprakash S. H., Sridharan A., “Correlation of compaction characteristics of standard and reduced Proctor tests”, Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, vol. 174(2), (2021), 170-180. https://doi.org/10.1680/jgeen.20.00060
DOI: https://doi.org/10.1680/jgeen.20.00060   Google Scholar

[23] Abbou M., Semcha A., Aoual F. K., “Physico-mechanical characterization and durability of stabilized compressed earth bricks in the region of Timimoun in southwestern Algeria”, Journal of Materials and Engineering Structures «JMES», vol. 8(2), (2021), 287-300.
  Google Scholar

[24] Zidan A. F., “Strength and consolidation characteristics for cement stabilized cohesive soil considering consistency index”, Geotechnical and Geological Engineering, vol. 38(5), (2020), 5341-5353. https://doi.org/10.1007/s10706-020-01367-6
DOI: https://doi.org/10.1007/s10706-020-01367-6   Google Scholar

[25] Sinha P., Iyer K. K., “Effect of stabilization on characteristics of subgrade soil: a review”, In: Prashant A., Sachan A., Desai C. (eds) Advances in Computer Methods and Geomechanics. Lecture Notes in Civil Engineering, vol 55. Springer, Singapore. https://doi.org/10.1007/978-981-15-0886-8_54
DOI: https://doi.org/10.1007/978-981-15-0886-8_54   Google Scholar

[26] Safi W., Singh S., “Efficient & effective improvement and stabilization of clay soil with waste materials”, Materials Today: Proceedings, vol. 51, (2022), 947-955. https://doi.org/10.1016/j.matpr.2021.06.333
DOI: https://doi.org/10.1016/j.matpr.2021.06.333   Google Scholar

[27] Labiad Y., Meddah A., Beddar M., Pantelidis L., “Study on characterization, mechanical, and thermal properties of Alfa fiber–reinforced compressed earth blocks incorporating crushed brick waste”, Arabian Journal of Geosciences, vol. 16(10), (2023), 575. https://doi.org/10.1007/s12517-023-11695-5
  Google Scholar

[28] Abdelkader F, Mohamed R, Cheikh K, Rabehi R., “Mechanical properties of compressed earth blocks reinforced with glass fibers and palm fibers: Experiments and simulation”, The Journal of Engineering and Exact Sciences, vol. 9(5), (2023) 15916-01e. https://doi.org/10.18540/jcecvl9iss5pp15916-01e
DOI: https://doi.org/10.18540/jcecvl9iss5pp15916-01e   Google Scholar

[29] Sujatha E. R., Atchaya P., Darshan S., Subhashini S., ‘Mechanical properties of glass fibre reinforced soil and its application as subgrade reinforcement”, Road Materials and Pavement Design, vol. 22, (2021), 2384-2395. https://doi.org/10.1080/14680629.2020.1746387
DOI: https://doi.org/10.1080/14680629.2020.1746387   Google Scholar

[30] Yilmaz Y., “Compaction and strength characteristics of fly ash and fiber amended clayey soil”, Engineering Geology, vol. 188, (2015), 168-177. https://doi.org/10.1016/j.enggeo.2015.01.018
DOI: https://doi.org/10.1016/j.enggeo.2015.01.018   Google Scholar

[31] Yilmaz Y., Kheirjouy A. B., Akgungor A. P., “Investigation of the effect of different saturation methods on the undrained shear strength of a clayey soil compacted with standard and modified proctor energies”, Periodica Polytechnica Civil Engineering, vol. 60(3), (2016), 323-329. https://doi.org/10.3311/PPci.8891
DOI: https://doi.org/10.3311/PPci.8891   Google Scholar

[32] Hamdan M. H. M., Siregar J. P., Cionita T., Jaafar J., Efriyohadi A., Junid R., Kholil A., “Water absorption behaviour on the mechanical properties of woven hybrid reinforced polyester composites”, The International Journal of Advanced Manufacturing Technology, vol. 104, (2019), 1075-1086. https://doi.org/10.1007/s00170-019-03976-9
DOI: https://doi.org/10.1007/s00170-019-03976-9   Google Scholar

[33] Rubio C. M., “A laboratory procedure to determine the thermal properties of silt loam soils based on ASTM D 5334”, Applied Ecology and Environmental Sciences, vol.1(4), (2013), 45-48.
DOI: https://doi.org/10.12691/aees-1-4-2   Google Scholar

[34] Chen X., Liu Y., Finite element modeling and simulation with ANSYS Workbench. CRC press, 2018.
DOI: https://doi.org/10.1201/9781351045872   Google Scholar

[35] Mostafa M., Uddin N., “Experimental analysis of Compressed Earth Block (CEB) with banana fibers resisting flexural and compression forces”, Case Studies in Construction Materials, vol. 5, (2016), 53-63. https://doi.org/10.1016/j.cscm.2016.07.001
DOI: https://doi.org/10.1016/j.cscm.2016.07.001   Google Scholar

[36] Atiki E., Taallah B., Feia S., Almeasar K. S., Guettala A., “Effects of incorporating date palm waste as a thermal insulating material on the physical properties and mechanical behavior of compressed earth block”, Journal of Natural Fibers, vol. 19(14), (2022), 8778-8795. https://doi.org/10.1080/15440478.2021.1967831
DOI: https://doi.org/10.1080/15440478.2021.1967831   Google Scholar

[37] Mohamed A. E. M. K., “Improvement of swelling clay properties using hay fibers”, Construction and Building Materials, vol. 38, (2013), 242-247. https://doi.org/10.1016/j.conbuildmat.2012.08.031
DOI: https://doi.org/10.1016/j.conbuildmat.2012.08.031   Google Scholar

[38] El Ahmad M., Najjar S., Sadek S., “Drained triaxial response of natural clay reinforced with natural hemp fibers”, International Journal of Geomechanics, vol. 24(7), (2024), 04024123. https://doi.org/10.1061/IJGNAI.GMENG-9190
DOI: https://doi.org/10.1061/IJGNAI.GMENG-9190   Google Scholar

[39] Zhang S., He P., Niu L., “Mechanical properties and permeability of fiber-reinforced concrete with recycled aggregate made from waste clay brick”, Journal of Cleaner Production, vol. 268, (2020), 121690. https://doi.org/10.1016/j.jclepro.2020.121690
DOI: https://doi.org/10.1016/j.jclepro.2020.121690   Google Scholar

[40] Limami H., Manssouri I., Cherkaoui K., Khaldoun A., “Mechanical and physicochemical performances of reinforced unfired clay bricks with recycled Typha-fibers waste as a construction material additive”, Cleaner Engineering and Technology, vol. 2, (2021), 100037. https://doi.org/10.1016/j.clet.2020.100037
DOI: https://doi.org/10.1016/j.clet.2020.100037   Google Scholar

[41] Liu L., Liu J., Xiao Z., „Investigation on soil water retention characteristics and tensile strength of phyllite residual soil reinforced with polypropylene fibers”, Construction and Building Materials, 444, 137544. https://doi.org/10.1016/j.conbuildmat.2024.137544
DOI: https://doi.org/10.1016/j.conbuildmat.2024.137544   Google Scholar

[42] Idder A., Hamouine A., Labbaci B., Abdeldjebar R., “The porosity of stabilized earth blocks with the addition plant fibers of the date palm”, Civil Engineering Journal, vol. 6(3), (2020), 478-494. https://doi.org/10.28991/cej-2020-03091485
DOI: https://doi.org/10.28991/cej-2020-03091485   Google Scholar

[43] Abessolo D., Biwole A. B., Fokwa D., Ganou Koungang B. M., Baah Y. B., “Physical, mechanical and hygroscopic behaviour of compressed earth blocks stabilized with cement and reinforced with bamboo fibres”, International Journal of Engineering Research in Africa, vol. 59, (2022), 29-41. https://doi.org/10.4028/p-spbskv
DOI: https://doi.org/10.4028/p-spbskv   Google Scholar

[44] Teixeira E. R., Machado G. P., Junior A. D., Guarnier C., Fernandes J., Silva S. M., Mateus R., “Mechanical and thermal performance characterisation of compressed earth blocks”, Energies, vol. 13(11), (2020), 2978. https://doi.org/10.3390/en13112978
DOI: https://doi.org/10.3390/en13112978   Google Scholar

[45] Yazici M. F., Keskin S. N., „Enhancing mechanical properties of low plasticity clay soil using hemp fibers: effects of fiber content and fiber surface coating”, Iranian Journal of Science and Technology, Transactions of Civil Engineering, vol. 48(2), (2024), 961-975. https://doi.org/10.1007/s40996-023-01208-5
DOI: https://doi.org/10.1007/s40996-023-01208-5   Google Scholar

[46] Salimi M., Payan M., Hosseinpour I., Arabani M., Ranjbar P. Z., “Effect of glass fiber (GF) on the mechanical properties and freeze-thaw (FT) durability of lime-nanoclay (NC)-stabilized marl clayey soil”, Construction and Building Materials, vol. 416, (2024),135227. https://doi.org/10.1016/j.conbuildmat.2024.135227
DOI: https://doi.org/10.1016/j.conbuildmat.2024.135227   Google Scholar

[47] Topçuoğlu Y. A., Gürocak Z., “Increasing strength of clay soils with the use of basalt fiber: an experimental study”, Turkish Journal of Science and Technology, vol. 19(1), (2024), 87-96. https://doi.org/10.55525/tjst.1398354
DOI: https://doi.org/10.55525/tjst.1398354   Google Scholar

[48] Donkor P., Obonyo E., “Earthen construction materials: Assessing the feasibility of improving strength and deformability of compressed earth blocks using polypropylene fibers”, Materials & Design, vol. 83, (2015), 813-819. https://doi.org/10.1016/j.matdes.2015.06.017
DOI: https://doi.org/10.1016/j.matdes.2015.06.017   Google Scholar

[49] Labiad Y., Meddah A., Beddar M., Pantelidis L., “Study on characterization, mechanical, and thermal properties of Alfa fiber–reinforced compressed earth blocks incorporating crushed brick waste”, Arabian Journal of Geosciences, vol. 16(10), (2023), 575. https://doi.org/10.1007/s12517-023-11695-5
DOI: https://doi.org/10.1007/s12517-023-11695-5   Google Scholar

[50] Madrid R., Mechan V., Asto L., Barboza C., Seclen K., “Influence of fibres on the resilient modulus and expansion of clayey subgrade soils”, International Journal of Pavement Engineering, vol. 25(1), (2024), 2298262. https://doi.org/10.1080/10298436.2023.2298262
DOI: https://doi.org/10.1080/10298436.2023.2298262   Google Scholar

[51] Pushpakumara B. H. J., Hewawaduge T. R., „Effect of banana fibre and lime on mechanical and thermal properties of unburnt clay bricks”, Australian Journal of Civil Engineering, vol. 22(1), (2024), 37-46. https://doi.org/10.1080/14488353.2022.2114639
DOI: https://doi.org/10.1080/14488353.2022.2114639   Google Scholar

[52] Berrehail T., Zemmouri N., Agoudjil B., “Thermal conductivity of cement stabilized earth bricks reinforced with date palm fiber”, In AIP Conference Proceedings, vol. 1968(1), (2018), 030036. https://doi.org/10.1063/1.5039223
DOI: https://doi.org/10.1063/1.5039223   Google Scholar

[53] El-yahyaoui A., Manssouri I., Lehleh Y., Sahbi H., Limami H., “Enhancing the mechanical and thermal insulation properties of clay-based construction materials with neutral carbon footprint through the use of Doum fibers”, Materials Chemistry and Physics, vol. 314, (2024), 128774. https://doi.org/10.1016/j.matchemphys.2023.128774
DOI: https://doi.org/10.1016/j.matchemphys.2023.128774   Google Scholar

[54] Khoudja D., Taallah B., Izemmouren O., Aggoun S., Herihiri O., Guettala A., “Mechanical and thermophysical properties of raw earth bricks incorporating date palm waste”, Construction and Building Materials, vol. 270, (2021), 121824. https://doi.org/10.1016/j.conbuildmat.2020.121824
DOI: https://doi.org/10.1016/j.conbuildmat.2020.121824   Google Scholar

[55] Ghailane H., Ahamat M. A., Padzi M. M., Beddu S., “Steady-state heat flow through hollow clay bricks”, In IOP Conference Series: Materials Science and Engineering, vol. 834(1), (2020), 012021. https://doi.org/10.1088/1757-899X/834/1/012021
DOI: https://doi.org/10.1088/1757-899X/834/1/012021   Google Scholar

[56] Doubi H. G., Kouamé A. N., Konan L. K., Tognonvi M., Oyetola S., “Thermal conductivity of compressed earth bricks strengthening by shea butter wastes with cement”, Materials Sciences and Applications, vol. 8(12), (2017), 848. https://doi.org/10.4236/msa.2017.812062
DOI: https://doi.org/10.4236/msa.2017.812062   Google Scholar

Download


Published
2024-12-16

Cited by

Fidjah, A. (2024) “Improving the properties of clay soils in foundations through compaction and the integration of fibres and cement”, Budownictwo i Architektura, 23(4), pp. 129–149. doi: 10.35784/bud-arch.6232.

Authors

Abdelkader Fidjah 
fidjah.abdelkader@gmail.com
Laboratory of Development in Mechanics and Materials (LDMM); University of Djelfa; Algeria

Authors

Mohamed Rabehi 

Civil Engineering Department; University of Djelfa; Algeria
https://orcid.org/0000-0002-3094-1720

Authors

Cheikh Kezrane 

Laboratory of Development in Mechanics and Materials (LDMM); University of Djelfa; Algeria

Authors

Asma Bendeb 

Process Engineering Lab Laghouat; University Algeria; Algeria
https://orcid.org/0009-0007-7297-2174

Authors

Nour Elhouda Smain 

Faculty of Engineering; Djelfa University; Algeria

Authors

Rachid Khalili  

Laboratory of Paleontology, Stratigraphy and Paleo Environments; Faculty of Earth Sciences and Universe; University of Oran; Algeria
https://orcid.org/0000-0002-2434-8058

Statistics

Abstract views: 130
PDF downloads: 75


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Budownictwo i Architektura supports the open science program. The journal enables Open Access to their publications. Everyone can view, download and forward articles, provided that the terms of the license are respected.

Publishing of articles is possible after submitting a signed statement on the transfer of a license to the Journal.