Strength and rheology of cement mortars incorporating quarry and commercial limestone filler
Article Sidebar
Open full text
Issue Vol. 24 No. 3 (2025)
-
Geodetic monitoring of the subsidence of a multi-storey building foundation
Oksana Gera, Roksolana Oleskiv, Liubov Dorosh, Mykola Hrynishak, Volodymyr Mykhailyshyn005-014
-
Natural and hybrid lighting effects on architecture students' creativity: a case study in Mostaganem
Zineb Derouiche, Malika Kacemi, Okba Benameur015-030
-
Smart transformation of cities: the case of the EMU Campus, North Cyprus
Islam Alshafei031--46
-
Behaviour of eco-friendly mortar containing recycled concrete sand in fresh and hardened states
Imen Bouldoum, Toufik Boubekeur, Karim Ezziane, Tien-Tung Ngo, EL Hadj Kadri, Jean-Christophe Lacouture047-062
-
Fire safety in historic buildings: A case study using the qualitative risk analysis method
Muammer Yaman, Cüneyt Kurtay063-078
-
Enhancing the mechanical and durability properties of bio self-compacting sand concrete containing granite industrial waste as a fine aggregate: an experimental study
Mohamed Guendouz, Moussa Hadjadj, Djamila Boukhelkhal079-099
-
Reconnecting with nature: reflections of the concepts of biophilia and biomimicry in interior design
Dürdane Aksoy Dolu, Emine Banu Burkut101-120
-
Morphological mutations of patios, from traditional to contemporary housing in Tadjmout city (Algeria): implications and considerations
Ali Chellali, Latifa Khettabi121-144
-
Analytical modeling of the dynamic thermal behavior of stabilized compacted earth blocks walls for bioclimatic constructions
M’hamed Mahdad, Aghiles Hammas, Said Abboudi145-170
-
Simulation-based performance evaluation of kinetic Mashrabiya for thermal comfort and energy efficiency in arid climates: A case study in Biskra, Algeria
Cherif Ben Bacha, Fatiha Bourbia171-193
-
Assessing the impact of degraded urban green infrastructure on disaster risk resilience: A case study of Amman city centre, Jordan
Islam Alshafei, Safa' Al-Kfouf, Pinar Ulucay Righelato195-212
-
Façade lighting designs in historical buildings: The case of Mersin Kızkalesi
Gizem Nur Özcan, Tuba Akar213-234
-
Strength and rheology of cement mortars incorporating quarry and commercial limestone filler
Salim Safiddine, Hamza Soualhi, El-Hadj Kadri235-253
Archives
-
Vol. 24 No. 3
2025-09-30 13
-
Vol. 24 No. 2
2025-06-25 13
-
Vol. 24 No. 1
2025-03-31 12
-
Vol. 23 No. 4
2025-01-02 11
-
Vol. 23 No. 3
2024-10-07 10
-
Vol. 23 No. 2
2024-06-15 8
-
Vol. 23 No. 1
2024-03-29 6
-
Vol. 22 No. 4
2023-12-29 9
-
Vol. 22 No. 3
2023-09-29 5
-
Vol. 22 No. 2
2023-06-30 3
-
Vol. 22 No. 1
2023-03-30 3
-
Vol. 21 No. 4
2022-12-14 8
-
Vol. 21 No. 3
2022-11-02 3
-
Vol. 21 No. 2
2022-08-31 3
-
Vol. 21 No. 1
2022-03-30 3
-
Vol. 20 No. 4
2021-12-29 6
-
Vol. 20 No. 3
2021-10-29 8
-
Vol. 20 No. 2
2021-06-02 8
-
Vol. 20 No. 1
2021-02-09 8
Main Article Content
DOI
Authors
Abstract
Clarifying the contrasting effects of limestone fillers in cement-based materials is crucial for the sustainable valorisation of quarry by-products. This study investigates the influence of three limestone fillers – quarry limestone dust (2985 cm²/g), commercial limestone filler (4690 cm²/g), and laboratory-ground limestone powder (4073 cm²/g) – on the rheological and mechanical properties of cement mortar. Two substitution strategies were considered: replacing sand (0–20%) with quarry limestone dust and laboratory-ground powder, and replacing cement (0–30%) with commercial filler. Quarry dust substitution reduces workability with little effect on strength, but washing and superplasticiser restore consistency. In contrast, cement replacement with commercial filler improves workability but decreases strength. Laboratory-ground limestone powder from washed sand, with finer particles and higher purity confirmed by XRD and FTIR, exhibited a nucleation effect and increased strength by 32.7% at 7 days. These results demonstrate that the impact of limestone fillers is governed by their origin, fineness, and substitution route, offering insights for optimising mortar formulation and enabling efficient utilisation of quarry by-products without compromising performance.
Keywords:
References
[1] Filali S., Nasser A., “Concrete production using marble powder and marble coarse aggregates: an analysis of mechanical properties and sustainability”, Budownictwo i Architektura, 23(4), (2024), 63–81. https://doi.org/10.35784/bud-arch.6286 DOI: https://doi.org/10.35784/bud-arch.6286
[2] Scrivener K., Martirena F., Bishnoi S., Maity S., “Calcined clay limestone cements (LC3)”, Cement and Concrete Research, 114, (2018), 49–56. https://doi.org/10.1016/j.cemconres.2017.08.017 DOI: https://doi.org/10.1016/j.cemconres.2017.08.017
[3] Bui N. K., Kurihara R., Kotaka W., et al., “Effects of particle size distribution on the performance of calcium carbonate concrete”, Journal of Advanced Concrete Technology, 20(11), (2022), 691–702. https://doi.org/10.3151/jact.20.691 DOI: https://doi.org/10.3151/jact.20.691
[4] Hay R., Peng B., Celik K., “Filler effects of CaCO3 polymorphs derived from limestone and seashell on hydration and carbonation of reactive magnesium oxide (MgO) cement (RMC)”, Cement and Concrete Research, 164, (2023), 107040. https://doi.org/10.1016/j.cemconres.2022.107040 DOI: https://doi.org/10.1016/j.cemconres.2022.107040
[5] Fakhri R. S., Dawood E.T., “Influence of binary blended cement containing slag and limestone powder to produce sustainable mortar”, AIP Conference Proceedings, AIP Publishing LLC (2023), 20028. https://doi.org/10.1063/5.0171499 DOI: https://doi.org/10.1063/5.0171499
[6] Liew J. J., Cheah C. B., Khaw K. L. P., Siddique R., Tangchirapat W., “Blended cement and mortar with various low-calcium ground coal bottom ash content: Engineering characteristics, embodied carbon and cost analysis”, Construction and Building Materials, 425, (2024), 135987. https://doi.org/10.1016/j.conbuildmat.2024.135987 DOI: https://doi.org/10.1016/j.conbuildmat.2024.135987
[7] Scrivener K. L., John V. M., Gartner E. M., “Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry”, Cement and Concrete Research, 114, (2018), 2–26. https://doi.org/10.1016/j.cemconres.2018.03.015 DOI: https://doi.org/10.1016/j.cemconres.2018.03.015
[8] Sanytsky M., Kropyvnytska T., Ivashchyshyn H., Rykhlitska О., “Eco-efficient blended cements with high volume supplementary cementitious materials”, Budownictwo i Architektura, 18(4), (2020), 005–014. https://doi.org/10.35784/bud-arch.816 DOI: https://doi.org/10.35784/bud-arch.816
[9] Fakhri R. S., Dawood E. T., “Properties evaluation of green mortar containing waste materials”, ASEAN Engineering Journal, 13(2), (2023), 115–123. https://doi.org/10.11113/aej.v13.18986 DOI: https://doi.org/10.11113/aej.v13.18986
[10] Zhang Y., Ying Y., Xing L., et al., “Carbon dioxide reduction through mineral carbonation by steel slag”, Journal of Environmental Sciences (China), 152, (2025), 664–684. https://doi.org/10.1016/j.jes.2024.06.016 DOI: https://doi.org/10.1016/j.jes.2024.06.016
[11] Zhang R., Scott A. N., Panesar D. K., “Carbonation and CO₂ reabsorption of cement-based materials: Influence of limestone filler and ground-granulated blast-furnace slag”, Construction and Building Materials, 416, (2024), 135166. https://doi.org/10.1016/j.conbuildmat.2024.135166 DOI: https://doi.org/10.1016/j.conbuildmat.2024.135166
[12] Sathiparan N., Jaasim J. H. M., Banujan B., “Sustainable production of cement masonry blocks with the combined use of fly ash and quarry waste”, Materialia, 26, (2022), 101621. https://doi.org/10.1016/j.mtla.2022.101621 DOI: https://doi.org/10.1016/j.mtla.2022.101621
[13] Tong L., Lihua Z., Bentian Y., Tong L., “Experimental studies to investigate efficacies of granite porphyry powder as homologous manufactured sand substitute”, Journal of Advanced Concrete Technology, 21(4), (2023), 307–321. DOI: https://doi.org/10.3151/jact.21.307
[14] Altheeb A., “Quarry dust waste-based cementitious composites – A comprehensive review”, Construction and Building Materials, 350, (2022), 128817. https://doi.org/10.1016/j.conbuildmat.2022.128817 DOI: https://doi.org/10.1016/j.conbuildmat.2022.128817
[15] Dhandapani Y., Santhanam M., Kaladharan G., Ramanathan S., “Towards ternary binders involving limestone additions – A review”, Cement and Concrete Research, 143, (2021), 106396. https://doi.org/10.1016/j.cemconres.2021.106396 DOI: https://doi.org/10.1016/j.cemconres.2021.106396
[16] Sakai E., Masuda K., Kakinuma Y., Aikawa Y., “Effects of shape and packing density of powder particles on the fluidity of cement pastes with limestone powder”, Journal of Advanced Concrete Technology, 7(3), (2009), 347–354. https://doi.org/10.3151/jact.7.347 DOI: https://doi.org/10.3151/jact.7.347
[17] Li B., Zhou M., Wang J., “Effect of the methylene blue value of manufactured sand on performances of concrete”, Journal of Advanced Concrete Technology, 9(2), (2011), 127–132. DOI: https://doi.org/10.3151/jact.9.127
[18] Safiddine S., Amokrane K., Debieb F., Soualhi H., Benabed B., Kadri E. H., “How quarry waste limestone filler affects the rheological behavior of cement-based materials”, Applied Rheology, 31(1), (2021), 63–75. https://doi.org/10.1515/arh-2020-0118 DOI: https://doi.org/10.1515/arh-2020-0118
[19] Cepuritis R., Jacobsen S., Pedersen B., Mørtsell E., “Crushed sand in concrete - Effect of particle shape in different fractions and filler properties on rheology”, Cement and Concrete Composites, 71, (2016), 26–41. https://doi.org/10.1016/j.cemconcomp.2016.04.004 DOI: https://doi.org/10.1016/j.cemconcomp.2016.04.004
[20] Nguyen D. T., Nguyen D. L., Ngoc-Tra Lam M., “An experimental investigation on the utilization of crushed sand in improving workability and mechanical resistance of concrete”, Construction and Building Materials, 326, (2022), 126766. https://doi.org/10.1016/j.conbuildmat.2022.126766 DOI: https://doi.org/10.1016/j.conbuildmat.2022.126766
[21] Zhu J., Zhou Y., Li C., et al., “A qualitative approach to describe the viscosity of flowable concrete made with manufactured sand containing different microfines”, Construction and Building Materials, 451, (2024), 138858. https://doi.org/10.1016/j.conbuildmat.2024.138858 DOI: https://doi.org/10.1016/j.conbuildmat.2024.138858
[22] Jiang Z., Yang Q., Wang B., Li C., Zhang J., Ren Q., “Limestone filler as a mineral additive on the compressive strength and durability of self-compacting concrete with limestone manufactured sand”, Journal of Building Engineering 94(March), 2024, pp. 109965. DOI: https://doi.org/10.1016/j.jobe.2024.109965
[23] Dargahi M., Sorelli L., “Micro-scale uniaxial compression assessment of hygro-thermo-mechanical interactions in limestone-filler cement paste at low water-to-fine ratio”, Cement and Concrete Composites, 163, (2025), 106194. https://doi.org/10.1016/j.cemconcomp.2025.106194 DOI: https://doi.org/10.1016/j.cemconcomp.2025.106194
[24] Xu H., Huang Y., Feng S., et al., “Utilization of limestone powder and silica fume as sustainable cement replacements in shotcrete: Experimental, molecular dynamics simulations, and microstructural analysis”, Powder Technology, 467, (2026), 121493. https://doi.org/10.1016/j.powtec.2025.121493 DOI: https://doi.org/10.1016/j.powtec.2025.121493
[25] Zhang M., Lv H., Jiang Q., Wu Y., Yang Y., Dai H., “Study on flexural behavior of laminated slabs constructed with composite limestone powder-tailings mixed sand concrete”, Structures, 77, (2025), 109169. https://doi.org/10.1016/j.istruc.2025.109169 DOI: https://doi.org/10.1016/j.istruc.2025.109169
[26] EN 1015-11:2019: Methods of test for mortar for masonry – Part 11: Determination of flexural and compressive strength of hardened mortar.
[27] Schwartzentruber A., Catherine C., “Method of the concrete equivalent mortar(CEM)--a new tool to design concrete containing admixture”, Materials and Structures(France), 33(232), (2000), 475–482. DOI: https://doi.org/10.1007/BF02480524
[28] Soualhi H., Kadri E. H., Ngo T. T., Bouvet A., Cussigh F., Kenai S., “A vane rheometer for fresh mortar: Development and validation”, Applied Rheology, 24(2), (2014), 1–7. http://doi.org/10.3933/ApplRheol-24-22594
[29] Mazouz B., Abderraouf A., Berkouche A., et al., “Modeling and optimization for the combined valorization of calcined sediments and ground blast-furnace slag in eco-mortar formulations: Rheological , mechanical , microstructural , and environmental assessments”, Structures, 80, (2025), 109984. https://doi.org/10.1016/j.istruc.2025.109984 DOI: https://doi.org/10.1016/j.istruc.2025.109984
[30] Zhang Z., Gao Y., Qin F., Sun F., Huang Y., “Mechanical properties of sustainable high strength ECC with substitution of cement by limestone powder”, Case Studies in Construction Materials, 19, (2023), e02434. https://doi.org/10.1016/j.cscm.2023.e02434 DOI: https://doi.org/10.1016/j.cscm.2023.e02434
[31] Komnitsas K., Zaharaki D., Vlachou A., Bartzas G., Galetakis M., “Effect of synthesis parameters on the quality of construction and demolition wastes (CDW) geopolymers”, Advanced Powder Technology, 26(2), (2015), 368–376. https://doi.org/10.1016/j.apt.2014.11.012 DOI: https://doi.org/10.1016/j.apt.2014.11.012
[32] Mohammed S., Elhem G., Mekki B., “Valorization of pozzolanicity of Algerian clay: Optimization of the heat treatment and mechanical characteristics of the involved cement mortars”, Applied Clay Science, 132–133, (2016), 711–721. https://doi.org/10.1016/j.clay.2016.08.027 DOI: https://doi.org/10.1016/j.clay.2016.08.027
[33] Liu T., Gong C., Duan L.C., Qu B., “Effects of sodium citrate on compressive strength and microstructure of NaOH-activated fly ash/slag cement exposed to high temperature”, Construction and Building Materials, 363, (2023), 129852. https://doi.org/10.1016/j.conbuildmat.2022.129852 DOI: https://doi.org/10.1016/j.conbuildmat.2022.129852
[34] Lecomte I., Henrist C., Liégeois M., Maseri F., Rulmont A., Cloots R., “(Micro)-structural comparison between geopolymers, alkali-activated slag cement and Portland cement”, Journal of the European Ceramic Society, 26(16), (2006), 3789–3797. https://doi.org/10.1016/j.jeurceramsoc.2005.12.021 DOI: https://doi.org/10.1016/j.jeurceramsoc.2005.12.021
[35] Nehdi M., Mindess S., Aıtcin P. C., “Rheology of high-performance concrete: effect of ultrafine particles.”, Cement and Concrete Research, 43, (1998), 1–9. https://doi.org/10.1016/S0008-8846(98)00022-2 DOI: https://doi.org/10.1016/S0008-8846(98)00022-2
[36] Safiddine S., Debieb F., Kadri E. H., Menadi B., Soualhi H., “Effect of crushed sand and limestone crushed sand dust on the rheology of cement mortar”, Applied Rheology, 27, (2017), 1–9. http://doi.org/10.3933/ApplRheol-27-14490
[37] Safiddine S., Soualhi H., Benabed B., Belaidi A. S. E., Kadri E. -H., “Effect of different supplementary cementitious materials and superplasticizers on rheological behavior of eco-friendly mortars”, Epitoanyag - Journal of Silicate Based and Composite Materials, 73(3), (2021), 119–129. DOI: https://doi.org/10.14382/epitoanyag-jsbcm.2021.18
[38] Xie D., Liu Q., Zhou Z., Gao J., Liu C., “Rheology and hardened properties of eco-friendly ultra-high performance concrete paste: Role of waste stone powder fillers”, Construction and Building Materials, 447, (2024), 138163. https://doi.org/10.1016/j.conbuildmat.2024.138163 DOI: https://doi.org/10.1016/j.conbuildmat.2024.138163
[39] Moon G. D., Oh S., Jung S. H., Choi Y. C., “Effects of the fineness of limestone powder and cement on the hydration and strength development of PLC concrete”, Construction and Building Materials, 135, (2017), 129–136. https://doi.org/10.1016/j.conbuildmat.2016.12.189 DOI: https://doi.org/10.1016/j.conbuildmat.2016.12.189
Article Details
Abstract views: 143
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Budownictwo i Architektura supports the open science program. The journal enables Open Access to their publications. Everyone can view, download and forward articles, provided that the terms of the license are respected.
Publishing of articles is possible after submitting a signed statement on the transfer of a license to the Journal.
Hamza Soualhi, Civil Engineering Department; University of Laghouat;
Civil Engineering Department; University of Laghouat; P.O. Box 37G, Laghouat, Algeria
