Impact of low-density polyethylene (LDPE) waste on the physico-mechanical and durability behavior of lime-stabilized adobe bricks
Article Sidebar
Open full text
Issue Vol. 24 No. 4 (2025)
-
Towards an exploratory approach to residential choices and social representations of domestic architecture. Case study: the town of El Eulma (north-central Algeria)
Imane Zaidi, Hassib Rehailia
-
The full-scale test of bearing structures of the shelter to assess the possibility of its further operation
Andrii Kramarchuk, Borys Ilnytskyy, Oksana Lytvyniak
-
Comparative review of liveability indices: trends and insights
Meenakshi Pappu, Nina Lazar
-
Involving children in design processes: a systematic review
Oksana Iurchyshyn
-
Impact of low-density polyethylene (LDPE) waste on the physico-mechanical and durability behavior of lime-stabilized adobe bricks
Hammache Soumia, Izemmouren Ouarda, Guettala Abdelhamid
-
The influence of layer interaction models and horizontal loads on flexible pavement strain responses
Andi Muflih Marsuq Muthaher, Anno Mahfuda, Muh Bahrul Ulum Al Karimi
-
Study of the impact of adhesion promoters on the properties of road bitumens
Yan Pyrig, Serhii Kishchynskyi, Andrii Galkin, Serhii Oksak, Olha Poliak, Iurii Sidun, Volodymyr Gunka
-
Toward autonomous floating architecture
Karolina Życzkowska
-
From neglect to nurture: redefining pocket gardens as community vitality centers – case study of Al-Shorouk City, Egypt
Aya Khashaba, Ghada Farouk Hassan, Noha Gamal Said, Ayat Ismail
-
Urban morphology during the French colonization (19th-20th centuries). Case study of Mostaganem City in north-western Algeria
Said Beldjilali, Sami Zerari, Naima Benkari
-
Numerical analysis of the load-bearing capacity of LVL beams reinforced with steel plates
Kacper Majchrzak, Marcin Chybiński, Łukasz Polus
-
Hybrid systems to enhance the seismic performance of steel soft-story structures
Kheira Camellia Nehar, Abdallah Yacine Rahmani, Said Hicham Boukhalkhal, Mohamed Badaoui
-
The Modelling vitality in the intermediate spaces of mid-rise residential complexes: a structural approach with a case study of Tehran
Seyedeh Ashraf Sadat, Mohammad Sadegh Taher Tolou Del, Bahram Saleh Sedghpour
Archives
-
Vol. 24 No. 4
2025-12-16 13
-
Vol. 24 No. 3
2025-09-30 13
-
Vol. 24 No. 2
2025-06-25 13
-
Vol. 24 No. 1
2025-03-31 12
-
Vol. 23 No. 4
2025-01-02 11
-
Vol. 23 No. 3
2024-10-07 10
-
Vol. 23 No. 2
2024-06-15 8
-
Vol. 23 No. 1
2024-03-29 6
-
Vol. 22 No. 4
2023-12-29 9
-
Vol. 22 No. 3
2023-09-29 5
-
Vol. 22 No. 2
2023-06-30 3
-
Vol. 22 No. 1
2023-03-30 3
-
Vol. 21 No. 4
2022-12-14 8
-
Vol. 21 No. 3
2022-11-02 3
-
Vol. 21 No. 2
2022-08-31 3
-
Vol. 21 No. 1
2022-03-30 3
-
Vol. 20 No. 4
2021-12-29 6
-
Vol. 20 No. 3
2021-10-29 8
-
Vol. 20 No. 2
2021-06-02 8
-
Vol. 20 No. 1
2021-02-09 8
Main Article Content
DOI
Authors
soumia.hammache@univ-biskra.dz
abdelhamid.guettala@univ-biskra.dz
Abstract
Earth-based construction techniques, such as adobe, are valued for their low cost and reduced environmental impact. However, their limited mechanical strength and poor water resistance reduce their overall durability. This study investigates the improvement of adobe bricks through the addition of lime and low-density polyethylene (LDPE) plastic waste derived from greenhouse cleaning activities, in varying proportions (2–6%) and fiber lengths (10–30 mm). The research aims to evaluate the physical, mechanical, and durability characteristics of the modified earth blocks. The results show a reduction of 23.57% in density, 17.95% in ultrasonic pulse velocity, and 37.80% in compressive strength. While the lower compressive strength reflects a mechanical limitation, the decrease in density could be beneficial for lightweight applications or for improving the thermal and acoustic insulation of walls. Conversely, notable improvements were recorded in tensile strength and abrasion resistance, which increased by 71.42% and 90.47%, respectively. Despite these benefits, the mixtures exhibited slightly higher water absorption and swelling, indicating increased sensitivity to moisture. Nevertheless, the reduced mass loss after wetting-drying cycles highlights an overall improvement in the long-term durability of the material.
Keywords:
References
[1] Yetgin S., Çavdar Ö., Cavdar A., “The effects of the fiber contents on the mechanic properties of the adobes”, Construction and Building Materials 22(3) (2008) 222-227. https://doi.org/10.1016/j.conbuildmat.2006.08.022
[2] Shukla A. Tiwari G. N., Sodha M. S., “Embodied energy analysis of adobe house”, Renewable Energy 34(3) (2009) 755–761. https://doi.org/10.1016/j.renene.2008.04.002
[3] Kallou A. Debieb F. Kenai S, “Performance of compressed earth blocks reinforced with natural fibres”, Budownictwo I Architektura 24(1) (2025) 25-49. https://doi.org/10.35784/bud-arch.6179
[4] Gandia R. M., Campos A. T., Corrêa A. A. R., Gomes F. C., “Energy costs comparison of masonry made from different materials”, Theoretical and Applied Engineering 2(1) (2018) 1–8.
[5] Corrêa A. A. R., Teixeira V. H., Lopes S. P., Oliveira M. S., “Evaluation of physical and mechanical properties of adobe bricks”, Ciencia e Agrotecnologia 30(3) (2006) 503–515. https://doi.org/10.1590/S1413-70542006000300017
[6] Pacheco-Torgal. F. Jalali. S, “Earth construction: lessons from the past for future eco-efficient construction”, Construction and Building Materials 29 (2012) 512–519. https://doi.org/10.1016/j.conbuildmat.2011.10.054
[7] Khoudja D., Taallah B., Izemmouren O., Aggoun S., Herihiri O., Guettala A., “Mechanical and thermophysical properties of raw earth bricks incorporating date palm waste”, Construction and Building Materials 270 (2021) 121824. https://doi.org/10.1016/j.conbuildmat.2020.121824
[8] Nagaraj H., Sravan M., Arun T., Jagadish K., “Role of lime with cement in long-term strength of compressed stabilized earth blocks”, International Journal of Sustainable Built Environment 3(1) (2014) 54–61. https://doi.org/10.1016/j.ijsbe.2014.03.001
[9] Standards. W.P., Australia, HB 195–The Australian earth building handbook, Standards Australia, Australia, 2002.
[10] Puppala A., Musenda C., “Effects of fiber reinforcement on strength and volume change in expansive soils”, Transportation Research Record: Journal of the Transportation Research Board 1736(1) (2000) 134–140. https://doi.org/10.3141/1736-17
[11] Parisi F., Asprone D., Fenu L., Prota A., “Experimental characterization of Italian composite adobe bricks reinforced with straw fibers”, Composite Structures 122 (2015) 300–307. http://dx.doi.org/10.1016/j.compstruct.2014.11.060
[12] Millogo Y., Morel J.-C., Aubert J.-E., Ghavami K. “Experimental analysis of pressed adobe blocks reinforced with hibiscus cannabinus fibers”, Construction and Building Materials 52 (2014) 71–78. https://doi.org/10.1016/j.conbuildmat.2013.10.094
[13] Gandia R. M., Gomes F. C., Correa A. A. R., Rodrigues M. C., Mendes R. F., “Physical, mechanical and thermal behavior of adobe stabilized with glass fibre reinforced polymer waste”, Construction and Building Materials 222 (2019) 168-182. https://doi.org/10.1016/j.conbuildmat.2019.06.107
[14] Danso H., Martinson D. B., Ali M., Williams J. B., “Physical, mechanical and durability properties of soil building blocks reinforced with natural fibers”, Construction and Building Materials 101 (2015b) 797–809. https://doi.org/10.1016/j.conbuildmat.2015.10.069
[15] Danso H., Martinson B., Ali M., Williams J. B., “Effect of sugarcane bagasse fibre on the strength properties of soil blocks”, in 1st International Conference on Bio-based Building Materials, June 22-24, 2015, Clermont-Ferrand, France.
[16] Zaidi A., Izemmouren O., Taallah B., Guettala A., “Mechanical and durability properties of adobe blocks filled with date palm wastes”, World Journal of Engineering 19(4) (2022) 532–545. https://doi.org/10.1108/WJE-02-2021-0094
[17] Taallah B., Guettala A., “The mechanical and physical properties of compressed earth block stabilized with lime and filled with untreated and alkali-treated date palm fibers”, 104 (2016) 52–62. https://doi.org/10.1016/j.conbuildmat.2015.12.007
[18] Ouarda I., Ferdous B., Karima G. “Influence of date palm waste aggregates on the mechanical strength and hygroscopicity behavior of earth-based composites”, Revue des Composites et des Matériaux Avancés-Journal of Composite and Advanced Materials 34(1) (2024) 33-41. https://doi.org/10.18280/rcma.340105
[19] Donkor P., Obonyo E., “Compressed soil blocks: Influence of fibers on flexural properties and failure mechanism”, Construction and Building Materials, 121 (2016) 25–33. https://doi.org/10.1016/j.conbuildmat.2016.05.151
[20] Layachi S., Izemmouren O., Dakhia A., Taallah B., Atiki E., Almeasar K. S., Layachi M., Guettala A., “Effect of incorporating expanded polystyrene beads on thermophysical, mechanical properties and life cycle analysis of light weight earth blocks”, Construction and Building Materials 375 (2023) 130948. https://doi.org/10.1016/j.conbuildmat.2023.130948
[21] Puy-Alquiza M. J., Miranda-Avilés R., Miranda Puy M. Y., Salazar-Hernández M. C., Moncada Sanchez C. D., “Adobes recycled with polystyrene: an alternative for the conservation and restoration of monuments and historical sites”, Materiales de Construction (75)357 (2025) e369. https://doi.org/10.3989/mc.2025.386524
[22] Oddo M. C., Cavaleri L., La Mendola L., Bilal H., “Integrating plastic waste into concrete: sustainable solutions for the environment”, Materials 17(14) (2024) 3408. https://doi.org/10.3390/ma17143408
[23] Gunat M. B., Sanusi A., Ndububa E. E., Obianyo I. I., Mambo A. D., “Transforming plastic waste into durable concrete: a pathway to sustainable infrastructure”, Discover Materials 5 (2025) 127. https://doi.org/10.1007/s43939-025-00272-0
[24] Vivek S., Hari Krishna P., Gunneswara Rao T. D., “A study on the mechanical behavior of concrete made with partial replacement of fine aggregate with waste plastic (LDPE)”, Material Today Proceedings (2023). https://doi.org/10.1016/j.matpr.2023.04.059
[25] Haouara S., Zeghichi L., Izemmouren O., Souici I., “Influence of aluminum waste on the thermos-mechanical properties of lightweight composite mortars based on sand and recycled high-density polyethylene”, European Journal of Environmental and Civil Engineering 28(4) (2023) 844-858. https://doi.org/10.1080/19648189.2023.2229396
[26] Dominguez-Santos D., Moya Bravo J. A., “Structural and mechanical performance of adobe with the addition of high-density polyethylene fibers for the construction of low-rise buildings”, Engineering Failure Analysis 139 (2022) 106461. https://doi.org/10.1016/j.engfailanal.2022.106461
[27] Sarath C., Beulah M., Gayathri G., Subashchandra bose R., Sahana M. B., Monica R., „Utilization of LDPE Plastic Waste and Laterite Soil in Manufacturing of Stabilized Earth Brick” Nanotechnology Perceptions 20 (2024) s15. https://doi.org/10.62441/nano-ntp.vi.3671
[28] FAOSTAT. Site Web de la Base Statistique de la FAO. 2020. Available online: https://www.FAO.org (accessed on 2 July 2023)
[29] Bouammar B., Le Développement Agricole Dans les Regions Sahariennes. Etude de cas de la Region d’Ouargla et de la Region de Biskra (2006–2008), Ph.D. Thesis, Université Kasdi Merbah, Ouargla, Algeria, 2010.
[30] DSA Biskra. Rapport de l’Activité Agricole de la Direction de Service Agricole de la Wilaya de Biskra-Algérie, DSA Biskra, Biskra, Algeria, 2020.
[31] Almohana A. I., Abdulwahid M. Y., Galobardes I., Mushtaq J., Almojil S. F., “Producing sustainable concrete with plastic waste: A review”, Environmental Challenges 9 (2022) 100626. https://doi.org/10.1016/j.envc.2022.100626
[32] Dao K., Ouedraogo M., Millogo Y., Aubert J.-E., Gomina M., “Thermal, hydric and mechanical behaviours of adobes stabilized with cement”, Construction and Building Materials, 158 (2018) 84–96. https://doi.org/10.1016/j.conbuildmat.2017.10.001
[33] Chaussees LCDPE, France. Service d’etudes sur les transports, L, R, E.L.A.2000 Traitement des sols à la chaux et -ou aux liants hydrauliques: application à la realization des remblais et des couches de forme, laboratoire central des ponts et chaussées.
[34] Cabane N., Sols traités a la chaux et aux liants hydrauliques: contribution à identification et à l’analyse des élements perturbateurs de la stabilization, Université Jean Monnet-Saint-Etienne, 2004
[35] Millogo Y., Aubert J.-E., Sere A. D., Fabbri A., Morel J.-C., “Earth blocks stabilized by cow-dung”, Materials and Structures 49 (11) (2016) 4583–4594. https://doi.org/10.1617/s11527-016-0808-6
[36] Aldaood A., Bouasker M., Al-Mukhtar M., “Impact of wetting–drying cycles on the microstructure and mechanical properties of lime-stabilized gypseous soils”, Engineering Geology 174 (2014) 11-21. https://doi.org/10.1016/j.enggeo.2014.03.002
[37] Laborel-Préneron A., Aubert J.-E., Magniont C., Tribout C., Bertron A., “Plant aggregates and fibers in earth construction materials: a review”, Construction and Building Materials 111 (2016) 719-734. https://doi.org/10.1016/j.conbuildmat.2016.02.119
[38] Ranjbar N., Mehrali M., Behnia A., Javadi Pordsari A., Mehrali M., Alengaram U. J., Jumaat M. Z., “A comprehensive study of the polypropylene fiber reinforced fly ash based geopolymer”, PLoS ONE 11(1) (2016) e0147546. https://doi.org/10.1371/journal.pone.0147546
[39] Andrejkovičová S., Velosa A. L., Rocha F., “Air lime– metakaolin–sepiolite mortars for earth-based walls”, Construction and Building Materials 44 (2013) 133–41. https://doi.org/10.1016/j.conbuildmat.2013.03.008
[40] Belakroum R., Gherfi A., Bouchema K., Gharbi A., Kerboua Y., Kadja M., Maalouf C., Mai T. H., El Wakil N., Lachi M., “Hygric buffer and acoustic absorption of new building insulation materials based on date palm fibers”, Journal of Building Engineering 12 (2017) 132-139. https://doi.org/10.1016/j.jobe.2017.05.011
[41] Divission CL. New Mexico adobe and rammed earth building code. CID-GCBNMBC-91-1. Santa Fe. New Mexico: General Construction Bureau, Regulation and Licensing Departement, 1991.
[42] Bayah M., Debieb F., Kadri E.-H., Bentchikou M., “Engineering properties of self-compacting concrete incorporating PET fibres and recycled fine concrete aggregates”, Budownictwo i Architektura 22(4) (2023) 71-95. https://doi.org/10.35784/bud-arch.5491
[43] Yetgin Ş., Çavdar Ö., Cavdar A., “The effects of the fiber contents on the mechanic properties of the adobes”, Construction and Building Materials 22(3) (2008) 222-227. https://doi.org/10.1016/j.conbuildmat.2006.08.022
[44] Al Rim K., Ledhem A., Douzane O., Dheilly R. M., Queneudec M., “Influence of the proportion of wood on the thermal and mechanical performances of clay cement-wood composites”, Cement and Concrete Composites 21(4) (1999) 269-276. https://doi.org/10.1016/S0958-9465(99)00008-6
[45] Khedari J., Watsanasathaporn P., Hirunlabh J., “Development of fibre-based soil–cement block with low thermal conductivity”, Cement and Concrete Composites, 27(1) (2005) 111-116. https://doi.org/10.1016/j.cemconcomp.2004.02.042
[46] Izemmouren O., Effet des ajouts minéraux sur la durabilité des briques de terre comprimée, these doctorat à l’université Biskra 2016.
[47] Almeasar K. S., Taallah B., Ouarda I., Atiki E., Guettala A., “Effect of Addition Date Palm Ash on Physical and Mechanical Properties and Hygroscopicity Behavior of Earth Mortars”, International Journal of Architectural Heritage 17(4) (2023) 585-603. https://doi.org/10.1080/15583058.2021.1950235
[48] Oushabi A., Sair S., Abboud Y., Tanane O., Bouari A. E., “An experimental investigation on morphological, mechanical and thermal properties of date palm particles reinforced polyurethane composites as new ecological insulating materials in building”, Case Studies in Construction Materials 7 (2017) 128-137. . https://doi.org/10.1016/j.cscm.2017.06.002
[49] Danso H., “Effect of rice husk on the mechanical properties of cement-based mortar”, Journal of the Institution of Engineers (India): Series D 101 (2020) 205-213. https://doi.org/10.1007/s40033-020-00228-z
[50] Tran K. Q., Satomi T., Takahashi H., “Improvement of mechanical behavior of cemented soil reinforced with waste cornsilk fibers”, Construction and Building Materials 178 (2018) 204-210. https://doi.org/10.1016/j.conbuildmat.2018.05.104
[51] Danso H., Martinson D. B., Ali M., Williams J. B., “Effect of fibre aspect ratio on mechanical properties of soil building blocks”, Construction and Building Materials 83 (2015) 314-319. https://doi.org/10.1016/j.conbuildmat.2015.03.039.
[52] Estabragh A. R., Bordbar A. T., Javadi A. A., “Mechanical behavior of a clay soil reinforced with nylon fibers”, Geotechnical and Geological Engineering, 29 (2011) 899-908. https://doi.org/10.1007/s10706-011-9427-8
[53] Salih M. M., Osofero A. I., Imbabi M. S., “Critical review of recent development in fiber reinforced adobe bricks for sustainable construction”, Frontiers of Structural and Civil Engineering 14 (2020) 839-854. https://doi.org/10.1007/s11709-020-0630-7
[54] Fitzmaurice R., Manual on Stabilized Soil Construction for Housing, Technical Assistance Programme, 1958.
[55] ASTM D559. Standard Test Methods for Wetting and Drying Compacted Soil-Cement Mixtures, American Society for Testing and Materials (ASTM), 1989.
Article Details
Abstract views: 1
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Budownictwo i Architektura supports the open science program. The journal enables Open Access to their publications. Everyone can view, download and forward articles, provided that the terms of the license are respected.
Publishing of articles is possible after submitting a signed statement on the transfer of a license to the Journal.
