USING MICROSERVICES ARCHITECTURE AS ANALYTICAL SYSTEM FOR ELECTRICAL IMPEDANCE TOMOGRAPHY IMAGING

Tomasz Cieplak

t.cieplak@pollub.pl
Lublin University of Technology, Faculty of Management, Department of Organization of Enterprise (Poland)

Tomasz Rymarczyk


1Research and Development Center, Netrix S.A., Lublin, 2University of Economics and Innovation in Lublin (Poland)

Grzegorz Kłosowski


Lublin University of Technology, Faculty of Management, Department of Organization of Enterprise (Poland)

Abstract

An image reconstruction with use of EIT method has been found useful in many areas of medical, industrial and environmental applications. Papers show that computational systems used for image reconstructions are utilizing parallel and distributed computations and multi-tier architecture, as well as monolithic architecture. The aim of our research is to define an analytical system architecture that will be able to combine a variety of image reconstruction algorithms with their representations in different programming languages. Based on examples described in different proceedings and research papers, a microservices architecture seems to be an interesting alternative to the monolithic one.


Keywords:

electrical impedance tomography, microservices, Internet of Things, image reconstruction

Adler A., Arnold J.H., Bayford R., Borsic A., Brown B., Dixon P., Grychtol B.: GREIT: a unified approach to 2D linear EIT reconstruction of lung images. Physiological measurement 30(6), 2009, 35–55, [DOI: 10.1088/0967-3334/30/6/S03].
  Google Scholar

Borcea L.: Electrical impedance tomography. Inverse Problems 18, 2002, 99–136.
  Google Scholar

Amaral M., Polo J., Carrera D., Mohomed I., Unuvar M., Steinder M.: Performance evaluation of microservices architectures using containers. Network Computing and Applications (NCA), IEEE 14th International Symposium, 2015.
  Google Scholar

D'Agostino D., Roverelli L., Zereik G., De Luca A., Salvaterra R., Belfiore A., Tiengo A.: A microservice-based portal for X-ray transient and variable sources. PeerJ Preprints, No. e2519v2, 2017.
  Google Scholar

Dragoni N., Giallorenzo S., Lafuente A. L., Mazzara M., Montesi F., Mustafin R., Safina L.: Microservices: yesterday, today, and tomorrow. arXiv preprint arXiv:1606.04036, 2016.
  Google Scholar

Dragoni N., Lanese I., Larsen S. T., Mazzara M., Mustafin R., Safina L.: Microservices: How to make your application scale. arXiv preprint arXiv:1702.07149, 2017
  Google Scholar

Duda K., Adamkiewicz P., Rymarczyk T.: Nondestructive Method to Examine Brick Wall Dampness. International Interdisciplinary Phd Workshop 2016, 68–71.
  Google Scholar

Filipowicz S.F., Rymarczyk T.: Measurement Methods and Image Reconstruction in Electrical Impedance Tomography. Przeglad Elektrotechniczny 88(6), 2012, 247–250.
  Google Scholar

Filipowicz S.F., Rymarczyk T.: The Shape Reconstruction of Unknown Objects for Inverse Problems. Przeglad Elektrotechniczny 88(3A), 2012, 55–57.
  Google Scholar

Fowler M.: Microservices. ThoughtWorks, http://martinfowler.com/articles/microservices.html, 2014 [06.09.2017].
  Google Scholar

Holder D.S.: Electrical Impedance Tomography: Methods, History and Applications. Series in Medical Physics and Biomedical Engineering, London 2005.
  Google Scholar

Johanson A., Flögel S., Dullo C., Hasselbring W.: OceanTEA: Exploring Ocean-Derived Climate Data Using Microservices. 6th International Workshop on Climate Informatics, National Center for Atmospheric Research in Bloulder, 2016.
  Google Scholar

Kapusta P., Majchrowicz M., Sankowski D., Jackowska-Strumiłło L., Banasiak R.: Distributed multi-node, multi-GPU, heterogeneous system for 3D image reconstruction in Electrical Capacitance Tomography–network performance and application analysis. Przegląd Elektrotechniczny 89(2B), 2013, 339—342.
  Google Scholar

Kim M., Mohindra A., Muthusamy V., Ranchal R., Salapura V., Slominski A., Khalaf R.: Building scalable, secure, multi-tenant cloud services on IBM Bluemix. IBM Journal of Research and Development 60(2-3), 2016.
  Google Scholar

Richardson C.: Pattern: Microservices Architecture, Microservices.io. http://microservices.io/patterns/microservices.html [06.09.2017].
  Google Scholar

Rybak G., Chaniecki Z., Grudzień K., Romanowski A., Sankowski D.: Non–invasive methods of industrial process control. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 3, 2014, 41–45 [DOI: 10.5604/20830157.1121349].
  Google Scholar

Rymarczyk T.: Using electrical impedance tomography to monitoring flood banks. International Journal of Applied Electromagnetics and Mechanics 45, 2014, 489–494.
  Google Scholar

Rymarczyk T.: New Methods to Determine Moisture Areas by Electrical Impedance Tomography. International Journal of Applied Electromagnetics and Mechanics 37(1–2), 2016, 79–87.
  Google Scholar

Rymarczyk T., Tchórzewski P., Sikora J.: Monitoring of Flood Embankment System by Nondestructive Method with Infinite Boundary Element. Studies in Applied Electromagnetics and Mechanics 40, 2015, 176–183.
  Google Scholar

Rymarczyk T., Tchórzewski P.: Topological methods to determine damages of flood embankments. Przegląd Elektrotechniczny 92(12), 2016, 153–156.
  Google Scholar

Sankowski D., Sikora J.: Electrical capacitance tomography: Theoretical basis and applications. IEL, Warsaw 2010.
  Google Scholar

Sousa G., Rudametkin W., Duchien L.: Automated Setup of Multi-Cloud Environments for Microservices-Based Applications. 9th IEEE International Conference on Cloud Computing, San Francisco, USA, 2016.
  Google Scholar

Sikora J., Wójtowicz S.: Industrial and Biological Tomography: Theoretical Basis and Applications. IEL, Warsaw 2010.
  Google Scholar

Smolik W.: Forward Problem Solver for Image Reconstruction by Nonlinear Optimization in Electrical Capacitance Tomography. Flow Measurement and Instrumentation 21, 2010, 70–77.
  Google Scholar

Tai C., Chung E., Chan T.: Electrical impedance tomography using level set representation and total variational regularization. Journal of Computational Physics 205(1), 2005, 357–372.
  Google Scholar

Wajman R., Fiderek P., Fidos H., Jaworski T., Nowakowski J., Sankowski D., Banasiak R.: Metrological evaluation of a 3D electrical capacitance tomography measurement system for two-phase flow fraction determination. Meas. Sci. Technol. 24(6), 2013, 065302.
  Google Scholar

Wang M.: Industrial Tomography: Systems and Applications. Elsevier, 2015.
  Google Scholar

Download


Published
2018-02-28

Cited by

Cieplak, T., Rymarczyk, T., & Kłosowski, G. (2018). USING MICROSERVICES ARCHITECTURE AS ANALYTICAL SYSTEM FOR ELECTRICAL IMPEDANCE TOMOGRAPHY IMAGING. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 8(1), 52–55. https://doi.org/10.5604/01.3001.0010.8652

Authors

Tomasz Cieplak 
t.cieplak@pollub.pl
Lublin University of Technology, Faculty of Management, Department of Organization of Enterprise Poland

Authors

Tomasz Rymarczyk 

1Research and Development Center, Netrix S.A., Lublin, 2University of Economics and Innovation in Lublin Poland

Authors

Grzegorz Kłosowski 

Lublin University of Technology, Faculty of Management, Department of Organization of Enterprise Poland

Statistics

Abstract views: 181
PDF downloads: 59


Most read articles by the same author(s)

1 2 3 4 > >>