Natural interfaces in VR - comparative analysis
Article Sidebar
Open full text
Issue Vol. 18 (2021)
-
Natural interfaces in VR - comparative analysis
Dawid Majdanik, Adrian Madoń, Tomasz Szymczyk1-6
-
Comparative analysis of solutions used in Automated Testing of Internet Applications
Magdalena Psujek, Aleksandra Radzik, Grzegorz Kozieł7-14
-
Evaluation of the Kinect controller precision
Piotr Mieszawski, Tomasz Szymczyk15-21
-
Analysis of modern human-computer interfaces
Michał Cioczek, Tomasz Czarnota, Tomasz Szymczyk22-29
-
Comparative analysis of tools for the integration of IT systems
Narzędzia do integracji systemów informatycznych - analiza porównawczaVladyslav Shkuta, Marek Miłosz30-36 -
Comparison of frameworks for creating web services using the Axis2/C and gSOAP examples
Roman Bondarev, Beata Pańczyk37-41
-
The comparative analysis of web applications frameworks in the Node.js ecosystem
Bartosz Miłosierny, Mariusz Dzieńkowski42-48
-
Human-social interaction robots to improve shared attention in children with autism
Ali Ashrafi49-54
-
Selection of the type of cooling for an overclocked Raspberry Pi 4B minicomputer processor operating at maximum load conditions
Jakub Machowski, Mariusz Dzieńkowski55-60
-
Comparison of the performance of relational databases PostgreSQL and MySQL for desktop application
Bartłomiej Klimek, Maria Skublewska-Paszkowska61-66
Main Article Content
DOI
Authors
Abstract
The article presents the results of a comparative analysis of contemporary virtual reality devices. The analysis focuses on both the analysis of technical parameters of the goggles as well as comparison of natural interfaces. The following devices were tested: HTC Vive, Oculus Rift, PlayStation VR, Samsung Gear VR. The most ergonomic and user-friendly interface turned out to be Oculus Rift, while goggles Samsung Gear VR were the worst from tested devices.
Keywords:
References
S. M. LaValle, Virtual Reality, Cambridge University Press, 2019.
M. Magnor, A. Sorkine-Hornung, Real VR – Immersive Digital Reality, Springer Nature (2020) 13, 301-306. DOI: https://doi.org/10.1007/978-3-030-41816-8
Definicja immersji, https://pl.wikipedia.org/wiki/Immersyjno%C5%9B%C4%87 , [14.08.2020].
Statystyki dotyczące liczby użytkowników VR i AR, https://www.emarketer.com/content/virtual-and-augmented-reality-users-2019 , [14.08.2020].
R. Riener, M. Harders, Virtual Reality in Medicine, Springer Science & Business Media, 2012. DOI: https://doi.org/10.1007/978-1-4471-4011-5
A. Lele, Virtual reality and its military utility, Institute for Defence Studies and Analyses, 2011. DOI: https://doi.org/10.1007/s12652-011-0052-4
Interfejsy graficzne, https://en.wikibooks.org/wiki/A-level_Computing/CIE/Computer_systems_communications_and_software/System_software/User_interfaces, [30.09.2020].
Interfejs użytkownika, https://pl.wikipedia.org/wiki/Interfejs_u%C5%BCytkownika, [30.09.2020].
Naturalny interfejs użytkownika, https://tylersmcmillan.home.blog/2019/02/18/blog-6/, [30.09.2020].
Debiut rynkowy HTC Vive https://www.theverge.com/2016/2/21/11081462/htc-vive-consumer-edition-price-release-date-mwc-2016, [30.10.2020].
Opis parametrów technicznych urządzeń Oculus, http://oculus.com, [30.10.2020].
Opis parametrów technicznych urządzeń PlayStation VR https://www.playstation.com/en-au/explore/playstation-vr, [30.10.2020].
Opis parametrów technicznych urządzeń Samsung Gear VR, https://www.roadtovr.com/samsung-gear-vr-2015-model-now-60/ , [30.10.2020].
B. LeClair, P. O’Connor, S. Podrucky, W.B. Lievers, Measuring the mass and center of gravity of helmet sys-tems for underground workers, Elsevier, 2018. DOI: https://doi.org/10.1016/j.ergon.2017.10.001
Przegląd i porównanie HTC Vive Pro, https://www.youtube.com/watch?v=jmZjJIyz-xA , [30.10.2020].
Porównanie Oculus RIFT S i HTC Vive Pro, http://www.youtube.com/watch?v=6NlDaam6izM, [30.10.2020].
Article Details
Abstract views: 433
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
