Performance evaluation of Machine Learning and Deep Learning models for 5G resource allocation
Article Sidebar
Open full text
Issue Vol. 37 (2025)
-
Performance evaluation of Machine Learning and Deep Learning models for 5G resource allocation
Abdullah Havolli, Majlinda Fetaji371-378
-
Analysis of the use of object detection systems in edge computing
Jakub Kozłowski, Marcin Badurowicz379-390
-
Performance analysis of Jetpack Compose components in mobile applications
Adrian Kwiatkowski, Jakub Smołka391-398
-
Methods for comparing three-dimensional motion trajectories
Tomasz Waldemar Samorow, Maria Skublewska-Paszkowska399-404
-
Performance and scalability analysis of monolithic and microservice architectures in social networks
Viacheslav Chernohor405-409
-
Comparative analysis of methods for identifying tree structures of coronary vessels
Kacper Liżewski, Małgorzata Charytanowicz410-417
-
Websites accessibility assessment of voivodeship cities in Poland
Kacper Czajka, Maria Skublewska-Paszkowska418-425
-
Analysis of ORM framework approaches for Node.js
Serhii Zhadko-Bazilevych426-430
-
Analysis of performance optimization methods for 3D games in the Unity environment
Maciej Potręć, Marcin Badurowicz431-435
-
The impact of AI use on the performance of chess engines
Jakub Król, Jakub Smołka436-442
-
Evaluating the effectiveness of selected tools in recognizing emotions from facial photos
Klaudiusz Wierzbowski443-450
-
Performance analysis of the GraphQL API creation technologies using Spring Boot and NestJS
Jakub Maciej Tkaczyk, Beata Pańczyk451-456
-
Comparative Performance Analysis of RabbitMQ and Kafka Message Queue Systems in Spring Boot and ASP.NET Environments
Filip Kamiński, Radosław Kłonica, Beata Pańczyk457-462
-
Analysis of current threats and security measures used in web applications on the example of Symfony, Express, and Spring Boot
Karol Kurowski, Magdalena Kramek463-469
-
The use of machine learning to classify symbols on cultural monuments to identify their origin and historical period.
Igor Pajura, Sylwester Korga470-475
-
Investigating Machine Learning Algorithms for Stroke Occurrence Prediction
Kazeem B. Adedeji, Titilayo A. Ogunjobi, Thabane H. Shabangu, Joshua A. Omowaye476-483
-
Comparative performance analysis of Spring Boot and Quarkus frameworks in Java applications
Grzegorz Szymanek, Jakub Smołka484-491
-
Influence of activation function in deep learning for cutaneous melanoma identification
Adrian Szymczyk, Maria Skublewska-Paszkowska492-499
-
Analysis of methods for simulating character encounters in a game with RPG elements
Michał Zdybel, Jakub Smołka500-507
-
Analysis of the efficiency of Apex and Java languages and related technologies in performing database operations
Marcin Janczarek, Konrad Lewicki, Jakub Smołka508-514
Main Article Content
DOI
Authors
Abstract
The deployment of 5G networks introduces challenges in resource allocation and maintaining Quality of Service (QoS). This study aims to develop and benchmark machine learning (ML) and deep learning (DL) models for predicting high-resource demands using real-world KPIs such as signal strength, latency, and bandwidth. By applying rigorous data pre-processing, we compare models including Logistic Regression, Random Forest, XGBoost, and GRU with Attention. A hybrid XGBoost-GRU-Attention model achieves 99.50% accuracy, demonstrating a superior ability to model temporal and feature interactions. These findings underscore the potential of AI-driven techniques for intelligent and real-time 5G optimization.
Keywords:
References
[1] H.M.F. Noman, E. Hanafi, K.A. Noordin, K. Dimyati, M.N. Hindia, A. Abdrabou, Machine learning empowered emerging wireless networks in 6G: Recent advancements, challenges and future trends, IEEE Access 11 (2023) 83017–83051, https://doi.org/10.1109/ACCESS.2023.3302250.
[2] D.C. Bikkasani, M.R. Yerabolu, AI-driven 5G network optimization: A comprehensive review of resource allocation, traffic management, and dynamic network slicing, Am. J. Artif. Intell. 8(2) (2024) 55–62, https://doi.org/10.11648/j.ajai.20240802.14.
[3] H. Zhou, M. Erol-Kantarci, H.V. Poor, Knowledge transfer and reuse: A case study of AI-enabled resource management in RAN slicing, IEEE Wirel. Commun. 30 (2022) 160–169. https://doi.org/10.1109/MWC.004.2200025.
[4] N. Shukla, R. Kumar, D. Shah, A. Sharma, Xcelerate5G: Optimizing resource allocation strategies for 5G network using ML, In 2024 IEEE Int. Conf. Comput., Power Commun. Technol. (IC2PCT) 5 (2024) 417–423. https://doi.org/10.1109/IC2PCT60090.2024.10486750.
[5] A. Havolli, M. Fetaji, A comparative analysis of MLR, SVR, and KNN for improving quality of service in next generation network via machine learning regression, In 2024 13th Mediterr. Conf. Embedded Comput. (MECO) (2024) 1-5, https://doi.org/10.1109/MECO62516.2024.10577892.
[6] N. Jayaweera, A. Seneviratne, M. Liyanage, T. Taleb, 5G-Advanced AI/ML beam management: Performance evaluation with integrated ML models, arXiv preprint arXiv:2404.15326 (2024), https://doi.org/10.48550/arXiv.2404.15326.
[7] F. Rezazadeh, M. Hosseinian, A. Karimipour, A. Leon-Garcia, X-GRL: An empirical assessment of explainable GNN-DRL in B5G/6G networks, In 2023 IEEE Conf. Netw. Funct. Virtualization Softw. Defined Netw. (NFV-SDN) (2023) 172–174, https://doi.org/10.1109/NFV-SDN59219.2023.10329778.
[8] L. Wang, M. Chen, H.V. Poor, M. Bennis, Deep reinforcement learning based resource allocation for cloud native wireless network, arXiv preprint arXiv:2305.06249 (2023), https://doi.org/10.48550/arXiv.2305.06249.
[9] B. Ma, W. Guo, J. Zhang, A survey of online data-driven proactive 5G network optimisation using machine learning, IEEE Access 8 (2020) 35606–35637, https://doi.org/10.1109/ACCESS.2020.2975004.
[10] Y. Shi, L. Liu, H. Boche, M. Debbah, K.B. Letaief, H.V. Poor, Machine learning for large-scale optimization in 6G wireless networks, IEEE Commun. Surv. Tutor. 25 (2023) 2088–2132, https://doi.org/10.1109/COMST.2023.3300664.
[11] S.S. Sefati, H. Shirazi, M.M.E. Amini, M. Erol-Kantarci, B. Dezfouli, A comprehensive survey on resource management in 6G network based on Internet of Things, IEEE Access 12 (2024) 113741-113784, https://doi.org/10.1109/ACCESS.2024.3444313.
[12] A. Havolli, M. Fetaji, AI-driven resource allocation strategies for enhanced quality of service in 5G networks, Int. J. Inf. Technol. Secur. 17(2) (2025) 77-88, https://doi.org/10.59035/cupu8017.
[13] O. Aouedi, V.A. Le, K. Piamrat, Y. Ji, Deep learning on network traffic prediction: Recent advances, analysis, and future directions, ACM Comput. Surv. 57(6) (2025) 1–37, https://doi.org/10.1145/3703447.
[14] D.G.S. Pivoto, R.C. de Lamare, J.M. Luna, F.L.J. Vieira, A comprehensive survey of machine learning applied to resource allocation in wireless communications, IEEE Commun. Surv. Tutor. (Early Access) (2025), https://doi.org/10.1109/COMST.2025.3552370.
[15] S. Bi, M. Lauridsen, C. Stefanovic, P. Popovski, Failure analysis in next-generation critical cellular communication infrastructures, arXiv preprint arXiv:2402.04448 (2024), https://doi.org/10.48550/arXiv.2402.04448.
[16] A. Havolli, M. Fetaji, Improving radio network planning and design in next-generation mobile networks using AI and ML algorithms, In 2023 12th Mediterr. Conf. Embedded Comput. (MECO) (2023) 1–5, https://doi.org/10.1109/MECO58584.2023.10155089.
[17] D. Bikkasani, M. Yerabolu, AI-driven 5G network optimization: A comprehensive review of resource allocation, traffic management, and dynamic network slicing, Am. J. Artif. Intell. 8 (2024) 55–62, https://doi.org/10.11648/j.ajai.20240802.14.
[18] Ibrahim, S.A. Abdulhussien, H. Lalkargole, H.H. Qasim, Enhancing bandwidth allocation efficiency in 5G networks with artificial intelligence, SSRN Preprint (2025) 5223151, https://doi.org/10.32604/cmc.2025.066548.
[19] H. Albinsaid, H.D. Tuan, H.V. Poor, T.Q. Duong, Multi-agent reinforcement learning-based distributed dynamic spectrum access, IEEE Trans. Cogn. Commun. Netw. 8 (2021) 1174–1185, https://doi.org/10.1109/TCCN.2021.3120996.
[20] S.H. Ghafouri, S.M. Hashemi, P.C.K. Hung, A survey on web service QoS prediction methods, IEEE Trans. Serv. Comput. 15 (2022) 2439–2454, https://doi.org/10.1109/TSC.2020.2980793.
[21] M. Dubey, A.K. Singh, R. Mishra, AI-based resource management for 5G network slicing: History, use cases, and research directions, Concurrency Comput. Pract. Exp. 37(2) (2025) e8327, https://doi.org/10.1049/ntw2.70002.
[22] O. Nassef, M. Hamid, Y. Gadallah, H.S. Hassanein, A survey: Distributed machine learning for 5G and beyond, Comput. Netw. 207 (2022) 108820, https://doi.org/10.1016/j.comnet.2022.108820.
[23] B. Kuboye, A. Adedipe, S. Oloja, O. Obolo, Users’ evaluation of traffic congestion in LTE networks using machine learning techniques, Artif. Intell. Adv. 5 (2023) 8–24, https://doi.org/10.30564/aia.v5i1.5452.
[24] M.A. Kamal, S.U. Rehman, M.A. Jan, M. Imran, S. Ullah, Resource allocation schemes for 5G network: A systematic review, Sensors 21 (2021) 6588, https://doi.org/10.3390/s21196588.
[25] O. Izima, R. de Fréin, A. Malik, A survey of machine learning techniques for video quality prediction from quality of delivery metrics, Electronics 10 (2021) 2851, https://doi.org/10.3390/electronics10222851.
[26] M. Malkoc, H.A. Kholidy, 5G network slicing: Analysis of multiple machine learning classifiers, arXiv preprint arXiv:2310.01747 (2023), https://doi.org/10.1109/COMST.2021.3067807.
[27] A.K. Bashir, M.A. Salahuddin, O. Kaiwartya, Q.H. Abbasi, D.N.K. Jayakody, Y. Cao, An optimal multitier resource allocation of cloud RAN in 5G using machine learning, Trans. Emerg. Telecommun. Technol 30(8) (2019) e3627, https://doi.org/10.1002/ett.3627.
[28] R.U. Mustafa, S. Dassanayake, N. Ashraf, Machine learning-based prediction of quality shifts on video streaming over 5G, arXiv preprint arXiv:2504.17938 (2025), https://doi.org/10.48550/arXiv.2504.17938.
[29] D. Rahmayanti, Predicting quality of service on cellular networks using artificial intelligence, J. Eng. Electr. Inform. 5 (2025) 28–35, https://doi.org/10.55606/jeei.v5i2.3901.
[30] S. Partani, M. Zentarra, A. Kiggundu, H.D. Schotten, Improving QoS prediction in urban V2X networks by leveraging data from leading vehicles and historical trends, arXiv preprint arXiv:2504.16848 (2025), https://doi.org/10.48550/arXiv.2504.16848.
Article Details
Abstract views: 29

