Influence of activation function in deep learning for cutaneous melanoma identification
Article Sidebar
Open full text
Issue Vol. 37 (2025)
-
Performance evaluation of Machine Learning and Deep Learning models for 5G resource allocation
Abdullah Havolli, Majlinda Fetaji371-378
-
Analysis of the use of object detection systems in edge computing
Jakub Kozłowski, Marcin Badurowicz379-390
-
Performance analysis of Jetpack Compose components in mobile applications
Adrian Kwiatkowski, Jakub Smołka391-398
-
Methods for comparing three-dimensional motion trajectories
Tomasz Waldemar Samorow, Maria Skublewska-Paszkowska399-404
-
Performance and scalability analysis of monolithic and microservice architectures in social networks
Viacheslav Chernohor405-409
-
Comparative analysis of methods for identifying tree structures of coronary vessels
Kacper Liżewski, Małgorzata Charytanowicz410-417
-
Websites accessibility assessment of voivodeship cities in Poland
Kacper Czajka, Maria Skublewska-Paszkowska418-425
-
Analysis of ORM framework approaches for Node.js
Serhii Zhadko-Bazilevych426-430
-
Analysis of performance optimization methods for 3D games in the Unity environment
Maciej Potręć, Marcin Badurowicz431-435
-
The impact of AI use on the performance of chess engines
Jakub Król, Jakub Smołka436-442
-
Evaluating the effectiveness of selected tools in recognizing emotions from facial photos
Klaudiusz Wierzbowski443-450
-
Performance analysis of the GraphQL API creation technologies using Spring Boot and NestJS
Jakub Maciej Tkaczyk, Beata Pańczyk451-456
-
Comparative Performance Analysis of RabbitMQ and Kafka Message Queue Systems in Spring Boot and ASP.NET Environments
Filip Kamiński, Radosław Kłonica, Beata Pańczyk457-462
-
Analysis of current threats and security measures used in web applications on the example of Symfony, Express, and Spring Boot
Karol Kurowski, Magdalena Kramek463-469
-
The use of machine learning to classify symbols on cultural monuments to identify their origin and historical period.
Igor Pajura, Sylwester Korga470-475
-
Investigating Machine Learning Algorithms for Stroke Occurrence Prediction
Kazeem B. Adedeji, Titilayo A. Ogunjobi, Thabane H. Shabangu, Joshua A. Omowaye476-483
-
Comparative performance analysis of Spring Boot and Quarkus frameworks in Java applications
Grzegorz Szymanek, Jakub Smołka484-491
-
Influence of activation function in deep learning for cutaneous melanoma identification
Adrian Szymczyk, Maria Skublewska-Paszkowska492-499
-
Analysis of methods for simulating character encounters in a game with RPG elements
Michał Zdybel, Jakub Smołka500-507
-
Analysis of the efficiency of Apex and Java languages and related technologies in performing database operations
Marcin Janczarek, Konrad Lewicki, Jakub Smołka508-514
Main Article Content
DOI
Authors
Abstract
Malignant melanoma is an aggressive skin cancer requiring early detection for effective treatment. In this study, it is hypothesized that the choice of activation function affects the classification performance of pre-trained models in melanoma detection, and that the optimal activation function varies across deep CNN architectures. The impact of various activation functions (ReLU, LeakyReLU, ELU, GELU, Swish, Mish, PReLU) on the diagnostic accuracy of ResNet152, DenseNet201, and EfficientNet-B4 models was investigated. The study was conducted using a combined ISIC dataset, comprising dermoscopic images collected between 2018 and 2020. Findings indicate EfficientNet-B4 with LeakyReLU achieved the highest accuracy of 90.5%, while DenseNet201 benefited most from ReLU (90.3%). Results confirm the influence of activation function selection, demonstrating architecture-specific optimal choices for enhanced classification.
Keywords:
References
[1] D. C. Whiteman, A. C. Green, C. M. Olsen, The growing burden of invasive melanoma: projections of incidence rates and numbers of new cases in six susceptible populations through 2031, Journal of Investigative Dermatology 136(6) (2016) 1161-1171, https://doi.org/10.1016/j.jid.2016.01.035.
[2] Global impact of skin cancer, https://www.iarc.who.int/news-events/melanoma-awareness-month-2022/, [03.02.2025].
[3] P. P. Naik, Cutaneous malignant melanoma: a review of early diagnosis and management, World journal of oncology 12(1) (2021) 7-19, https://doi.org/10.14740/wjon1349.
[4] C. Morton, R. M. Mackie, Clinical accuracy of the diagnosis of cutaneous malignant melanoma, British Journal of Dermatology 138(2) (1998) 283–287, https://doi.org/10.1046/j.1365-2133.1998.02075.x.
[5] P. Carcagnì, M. Leo, G. Celeste, C. Distante, A. Cuna, A systematic investigation on deep architectures for automatic skin lesions classification, In 2020 25th International Conference on Pattern Recognition (ICPR) (2021) 8639-8646.
[6] R. Zhang, Melanoma detection using convolutional neural network, In 2021 IEEE International Conference on Consumer Electronics and Computer Engineering (ICCECE), IEEE (2021) 75-78, https://doi.org/10.1109/ICCECE51280.2021.9342142.
[7] J. SM, C. Aravindan, R. Appavu, Classification of skin cancer from dermoscopic images using deep neural network architectures, Multimedia Tools and Applications 82 (2023) 15763–15778, https://doi.org/10.1007/s11042-022-13847-3.
[8] A. D. Rasamoelina, F. Adjailia, P. Sinčák, A review of activation function for artificial neural network, In 2020 IEEE 18th world symposium on applied machine intelligence and informatics IEEE (2020) 281-286, https://doi.org/10.1109/SAMI48414.2020.9108717.
[9] Y. Wang, Y. Li, Y. Song, X. Rong, The influence of the activation function in a convolution neural network model of facial expression recognition, Applied Sciences 10(5) (2020) 1897.
[10] W. Hao , W. Yizhou , L. Yaqin, S. Zhili, The role of activation function in CNN, In 2020 2nd international conference on information technology and computer application IEEE (2020) 429-432.
[11] L. Yu, H. Chen, Q. Dou, J. Qin, P. A. Heng, Automated melanoma recognition in dermoscopy images via very deep residual networks, IEEE transactions on medical imaging 36 (2017) 994–1004.
[12] K. M. Hosny, M. A. Kassem, M. M. Foaud, Classification of skin lesions using transfer learning and augmentation with Alex-net, PloS one 14(5) (2019) e0217293, https://doi.org/10.1371/journal.pone.0217293.
[13] A. Mahbod, G. Schaefer, C. Wang, R. Ecker, I. Ellinge, Skin lesion classification using hybrid deep neural networks, In ICASSP 2019 – 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) IEEE (2019) 1229–1233, http://dx.doi.org/10.1109/ICASSP.2019.8683352.
[14] M. A. Rasel, U. H. Obaidellah, S. A. Kareem, Convolutional neural network-based skin lesion classification with Variable Nonlinear Activation Functions, IEEE Access 10 (2022) 83398-83414, https://doi.org/10.1109/ACCESS.2022.3196911.
[15] S. K. T. Que, Research techniques made simple: noninvasive imaging technologies for the delineation of basal cell carcinomas, Journal of Investigative Dermatology 136(4) (2016) 33–38, https://doi.org/10.1016/j.jid.2016.02.012.
[16] The International Skin Imaging Collaboration, https://www.isic-archive.com/, [03.02.2025].
[17] L. J. Caffery, V. Rotemberg, J. Weber, H. P. Soyer, J. Malvehy, D. Clunie, The role of DICOM in artificial intelligence for skin disease, Frontiers in medicine 7 (2020) 619787, https://doi.org/10.3389/fmed.2020.619787.
[18] S. Aksoy, P. Demircioglu, I. Bogrekci, Enhancing melanoma diagnosis with advanced deep learning models focusing on vision transformer, swin transformer, and convnext, Dermatopathology 11(3) (2024) 239–252, https://doi.org/10.3390/dermatopathology11030026.
[19] A. Krizhevsky, I. Sutskever, G. E. Hinton, ImageNet classification with deep convolutional neural networks, Communications of the ACM 60(6) (2017) 84-90, https://doi.org/10.1145/3065386.
[20] P. Powroznik, M. Skublewska-Paszkowska, R. Rejdak, K. Nowomiejska, Automatic method of macular diseases detection using deep CNN-GRU network in oct images, acta mechanica et automatica 18(4) (2024) 697-706, https://doi.org/10.2478/ama-2024-0074.
[21] P. Powroznik, M. Skublewska-Paszkowska, K. Nowomiejska, B. Gajda-Deryło, M. Brinkmann, M. Concilio, R. Rejdak, Residual self-attention vision transformer for detecting acquired vitelliform lesions and age-related macular drusen, Scientific Reports 15(1) (2025) 1-22, https://doi.org/10.1038/s41598-025-02299-y.
Article Details
Abstract views: 54

