Methods for comparing three-dimensional motion trajectories
Article Sidebar
Open full text
Issue Vol. 37 (2025)
-
Performance evaluation of Machine Learning and Deep Learning models for 5G resource allocation
Abdullah Havolli, Majlinda Fetaji371-378
-
Analysis of the use of object detection systems in edge computing
Jakub Kozłowski, Marcin Badurowicz379-390
-
Performance analysis of Jetpack Compose components in mobile applications
Adrian Kwiatkowski, Jakub Smołka391-398
-
Methods for comparing three-dimensional motion trajectories
Tomasz Waldemar Samorow, Maria Skublewska-Paszkowska399-404
-
Performance and scalability analysis of monolithic and microservice architectures in social networks
Viacheslav Chernohor405-409
-
Comparative analysis of methods for identifying tree structures of coronary vessels
Kacper Liżewski, Małgorzata Charytanowicz410-417
-
Websites accessibility assessment of voivodeship cities in Poland
Kacper Czajka, Maria Skublewska-Paszkowska418-425
-
Analysis of ORM framework approaches for Node.js
Serhii Zhadko-Bazilevych426-430
-
Analysis of performance optimization methods for 3D games in the Unity environment
Maciej Potręć, Marcin Badurowicz431-435
-
The impact of AI use on the performance of chess engines
Jakub Król, Jakub Smołka436-442
-
Evaluating the effectiveness of selected tools in recognizing emotions from facial photos
Klaudiusz Wierzbowski443-450
-
Performance analysis of the GraphQL API creation technologies using Spring Boot and NestJS
Jakub Maciej Tkaczyk, Beata Pańczyk451-456
-
Comparative Performance Analysis of RabbitMQ and Kafka Message Queue Systems in Spring Boot and ASP.NET Environments
Filip Kamiński, Radosław Kłonica, Beata Pańczyk457-462
-
Analysis of current threats and security measures used in web applications on the example of Symfony, Express, and Spring Boot
Karol Kurowski, Magdalena Kramek463-469
-
The use of machine learning to classify symbols on cultural monuments to identify their origin and historical period.
Igor Pajura, Sylwester Korga470-475
-
Investigating Machine Learning Algorithms for Stroke Occurrence Prediction
Kazeem B. Adedeji, Titilayo A. Ogunjobi, Thabane H. Shabangu, Joshua A. Omowaye476-483
-
Comparative performance analysis of Spring Boot and Quarkus frameworks in Java applications
Grzegorz Szymanek, Jakub Smołka484-491
-
Influence of activation function in deep learning for cutaneous melanoma identification
Adrian Szymczyk, Maria Skublewska-Paszkowska492-499
-
Analysis of methods for simulating character encounters in a game with RPG elements
Michał Zdybel, Jakub Smołka500-507
-
Analysis of the efficiency of Apex and Java languages and related technologies in performing database operations
Marcin Janczarek, Konrad Lewicki, Jakub Smołka508-514
Main Article Content
DOI
Authors
Abstract
Analysis of three-dimensional motion trajectories plays an important role in medicine, sports, robotics, and the entertainment industry. This research aims to compare the performance of the following six trajectory analysis algorithms: Euclidean Distance, Mean Squared Error, Dynamic Time Warping, Fréchet Distance, Fuzzy C-Means, and Fuzzy Similarity in terms of scalability, accuracy, computational efficiency, and robustness to speed variations. The research was conducted on the 3DTennisDS dataset containing tennis stroke trajectories recorded with the Vicon motion capture system. Results showed that fuzzy methods offer the best combination of accuracy (Fuzzy Similarity: 0.92, FCM: 0.89) and computational efficiency while maintaining high resistance to dynamic movements. In conclusion, fuzzy algorithms provide the most balanced solution for trajectory comparison in practical applications.
Keywords:
References
[1] B. Błaszczyk, Biomechanika układu ruchu człowieka, PZWL, Warsaw, 2012.
[2] T.-W. Lu, C.-F. Chang, Biomechanics of human movement and its clinical applications, Kaohsiung Journal of Medical Sciences 28(2) (2012) S13–S25, https://doi.org/10.1016/j.kjms.2011.08.004.
[3] K. Kowalczyk, M. Skublewska-Paszkowska, Metoda docinania faz ruchu podczas wiosłowania na ergometrze na podstawie danych trójwymiarowych, Journal of Computer Sciences Institute 5 (2017) 155–158, https://doi.org/10.35784/jcsi.614.
[4] C. Mandery, Ö. Terlemez, M. Do, N. Vahrenkamp, T. Asfour, The KIT whole-body human motion database, In Proceedings of the 2015 International Conference on Advanced Robotics (ICAR) (2015) 329–336, https://doi.org/10.1109/ICAR.2015.7251476.
[5] B. Ren, Z. Zhang, C. Zhang, S. Chen, Motion trajectories prediction of lower limb exoskeleton based on long short term memory (LSTM) networks, Actuators 11(3) (2022) 73, https://doi.org/10.3390/act11030073.
[6] A. Menache, Understanding Motion Capture for Computer Animation and Video Games, 2nd ed., Morgan Kaufmann, Burlington, 2011, https://doi.org/10.1016/C2009-0-62989-5.
[7] J. Tang, K. Kim, K. Wang, From screen to reality: exploring the evolution and integration of motion capture technology for virtual digital humans, Asia-Pacific Journal of Convergent Research Interchange 10(4) (2024) 301–316, https://doi.org/10.47116/apjcri.2024.04.12.
[8] M. H. Rahman, M. R. Hasan, N. I. Chowdhury, M. A. B. Syed, M. U. Farah, Predictive health analysis in Industry 5.0: a scientometric and systematic review of motion capture in construction, Digital Engineering 1 (2024) 100002, https://doi.org/10.1016/j.dte.2024.100002.
[9] X. Song, X. Chen, X. Li, J. Sun, X. Hou, S. Cui, Z. Zhang, H. Xiong, X. Wang, Pedestrian trajectory prediction based on deep convolutional LSTM network, IEEE Transactions on Intelligent Transportation Systems 24(2) (2023) 1667–1679, https://doi.org/10.1109/TITS.2020.2981118.
[10] N. Goldfarb, A. Lewis, A. Tacescu, G. S. Fischer, Open Source Vicon Toolkit for motion capture and gait analysis, Computer Methods and Programs in Biomedicine 212 (2021) 106414, https://doi.org/10.1016/j.cmpb.2021.106414.
[11] N. Darras, C. Joseph, A. Murphy, Clinical Gait Analysis Manager: freeware application to store, process and present gait analysis data, Gait & Posture 106 (2023) S233, https://doi.org/10.1016/j.gaitpost.2023.08.019.
[12] S. Bagheri, C3Dtools: Free access biomechanical toolkit, https://www.c3dtools.com, [12.01.2025].
[13] F. Chénier, Kinetics Toolkit: an open-source Python package to facilitate research in biomechanics, Journal of Open Source Software 6(66) (2021) 3714, https://doi.org/10.21105/joss.03714.
[14] A. Barrea, S. Armand, Biomechanical ToolKit: open-source framework to visualize and process biomechanical data, Computer Methods and Programs in Biomedicine 114(1) (2014) 80–87, https://doi.org/10.1016/j.cmpb.2014.01.012.
[15] J. Valčík, J. Sedmidubský, P. Zezula, Assessing similarity models for human-motion retrieval applications, Computer Animation and Virtual Worlds 27(5) (2016) 484–500, https://doi.org/10.1002/cav.1674.
[16] D. Schueller, C. Beecks, M. Hassani, J. Hinnell, B. Brenger, T. Seidl, I. Mittelberg, Automated pattern analysis in gesture research: similarity measuring in 3D motion capture models of communicative action, Digital Humanities Quarterly 11(2) (2017) 1–14, http://www.digitalhumanities.org/dhq/vol/11/2/000309/000309.html, [22.01.2025].
[17] J. Beernaerts, E. Debever, M. Lenoir, B. De Baets, N. Van de Weghe, A method based on the Levenshtein distance metric for the comparison of multiple movement patterns described by matrix sequences of different length, Expert Systems with Applications 115 (2019) 373–385, https://doi.org/10.1016/j.eswa.2018.07.076.
[18] J. Wang, J. Hua, R. Ding, L. Zou, H. Li, L. Zhang, Q. Sun, D. He, Comparative study of normal condyle and temporomandibular joint prosthesis movement during mouth opening by dynamic MRI and CT, Quantitative Imaging in Medicine and Surgery 13(7) (2023) 4606–4620, https://doi.org/10.21037/qims-22-1239.
[19] A. Świtoński, T. Krzeszowski, H. Josiński, B. Kwolek, K. Wojciechowski, Gait recognition on the basis of markerless motion tracking and DTW transform, IET Biometrics 7(5) (2018) 415–422, https://doi.org/10.1049/iet-bmt.2017.0134.
[20] W. Li, Z. Luo, X. Xi, Movement trajectory recognition of sign language based on optimized dynamic time warping, Electronics 9(9) (2020) 1400, https://doi.org/10.3390/electronics9091400.
[21] K. Buchin, T. Ophelders, B. Speckmann, Computing the similarity between moving curves, Computational Geometry 73 (2018) 2–14, https://doi.org/10.1016/j.comgeo.2017.01.002.
[22] M. Skublewska‑Paszkowska, P. Powroznik, P. Karczmarek, E. Lukasik, E. Łukasik, J. Smolka, Fuzzy C‑Means Clustering for Motion Capture Tennis Time‑Series Data, IEEE Access 12 (2024) 150975–150996, https://doi.org/10.1109/access.2024.3463201.
[23] W. Lu, X. Wei, W. Xing, W. Liu, Trajectory-based motion pattern analysis of crowds, Neurocomputing 247 (2017) 213–223, https://doi.org/10.1016/j.neucom.2017.03.074.
[24] Z. Izakian, S. M. Mesgari, A. Abraham, Automated clustering of trajectory data using particle swarm optimization, Computers, Environment and Urban Systems 55 (2016) 55–65, https://doi.org/10.1016/j.compenvurbsys.2015.10.009.
[25] X. Wang, J. Xu, Y. Song, Q. Zheng, J. Lv, W. Yan, Q. Cai, Z. Dai, Vehicle behavior analysis using reconstructed 3D parameters for road safety, Safety Science 144 (2021) 105419, https://doi.org/10.1016/j.ssci.2021.105419.
[26] A. R. Alobaidi, T. Dhieb, T. M. Hamdani, A. Wali, K. Ouahada, A. M. Alimi, In-air signature verification system based on beta-elliptical approach and fuzzy perceptual detector, IEEE Access 11 (2023) 134058–134073, https://doi.org/10.1109/ACCESS.2023.3336860.
[27] M. M. Deza, E. Deza, Encyclopedia of Distances, 2nd ed., Springer, Berlin, 2013, 5–6, https://doi.org/10.1007/978-3-642-30958-8.
[28] J. Fürnkranz, P. K. Chan, Mean squared error, In C. Sammut, G. I. Webb (Eds.), Encyclopedia of Machine Learning, Springer, Boston, 2010, 666–667, https://doi.org/10.1007/978-0-387-30164-8_528.
[29] H. Izakian, W. Pedrycz, I. Jamal, Fuzzy clustering of time-series data using dynamic time-warping distance, Engineering Applications of Artificial Intelligence 39 (2015) 235–244, https://doi.org/10.1016/j.engappai.2014.12.015.
[30] C. P. Pappis, N. I. Karacapilidis, A comparative assessment of measures of similarity of fuzzy values, Fuzzy Sets and Systems 56 (1993) 171–174, https://doi.org/10.1016/0165-0114(93)90141-4.
[31] M. Skublewska-Paszkowska, P. Powroźnik, E. Łukasik, J. Smołka, Tennis patterns recognition based on a novel tennis dataset – 3DTennisDS, Advances in Science and Technology Research Journal 18(6) (2024) 159–176, https://doi.org/10.12913/22998624/191264.
[32] Z. Gong, Y. Chen, Dynamic State Warping, arXiv preprint arXiv:1703.01141v1 (2017), https://arxiv.org/abs/1703.01141.
[33] S. Soheily-Khah, P.-F. Marteau, Sparsification of the alignment path in DTW, arXiv preprint arXiv:1711.04453v1 (2017), https://arxiv.org/abs/1711.04453.
[34] K. Buchin, A. Nusser, S. Wong, Computing Continuous Dynamic Time Warping of Time Series in Polynomial Time, In Proceedings of the 38th Int. Symp. on Computational Geometry (SoCG 2022), LIPIcs 224 (2022) 22:1–22:16, https://doi.org/10.4230/LIPIcs.SoCG.2022.22.
[35] Q. Zhao, L. Itti, Shape Dynamic Time Warping, arXiv preprint arXiv:1606.01601v1 (2016), https://arxiv.org/abs/1606.01601.
[36] J. Rhodes, A. Lee, TimewarpVAE, arXiv preprint arXiv:2310.16027v2 (2023), https://arxiv.org/abs/2310.16027.
Article Details
Abstract views: 29

