Comparative analysis of methods for identifying tree structures of coronary vessels
Article Sidebar
Open full text
Issue Vol. 37 (2025)
-
Performance evaluation of Machine Learning and Deep Learning models for 5G resource allocation
Abdullah Havolli, Majlinda Fetaji371-378
-
Analysis of the use of object detection systems in edge computing
Jakub Kozłowski, Marcin Badurowicz379-390
-
Performance analysis of Jetpack Compose components in mobile applications
Adrian Kwiatkowski, Jakub Smołka391-398
-
Methods for comparing three-dimensional motion trajectories
Tomasz Waldemar Samorow, Maria Skublewska-Paszkowska399-404
-
Performance and scalability analysis of monolithic and microservice architectures in social networks
Viacheslav Chernohor405-409
-
Comparative analysis of methods for identifying tree structures of coronary vessels
Kacper Liżewski, Małgorzata Charytanowicz410-417
-
Websites accessibility assessment of voivodeship cities in Poland
Kacper Czajka, Maria Skublewska-Paszkowska418-425
-
Analysis of ORM framework approaches for Node.js
Serhii Zhadko-Bazilevych426-430
-
Analysis of performance optimization methods for 3D games in the Unity environment
Maciej Potręć, Marcin Badurowicz431-435
-
The impact of AI use on the performance of chess engines
Jakub Król, Jakub Smołka436-442
-
Evaluating the effectiveness of selected tools in recognizing emotions from facial photos
Klaudiusz Wierzbowski443-450
-
Performance analysis of the GraphQL API creation technologies using Spring Boot and NestJS
Jakub Maciej Tkaczyk, Beata Pańczyk451-456
-
Comparative Performance Analysis of RabbitMQ and Kafka Message Queue Systems in Spring Boot and ASP.NET Environments
Filip Kamiński, Radosław Kłonica, Beata Pańczyk457-462
-
Analysis of current threats and security measures used in web applications on the example of Symfony, Express, and Spring Boot
Karol Kurowski, Magdalena Kramek463-469
-
The use of machine learning to classify symbols on cultural monuments to identify their origin and historical period.
Igor Pajura, Sylwester Korga470-475
-
Investigating Machine Learning Algorithms for Stroke Occurrence Prediction
Kazeem B. Adedeji, Titilayo A. Ogunjobi, Thabane H. Shabangu, Joshua A. Omowaye476-483
-
Comparative performance analysis of Spring Boot and Quarkus frameworks in Java applications
Grzegorz Szymanek, Jakub Smołka484-491
-
Influence of activation function in deep learning for cutaneous melanoma identification
Adrian Szymczyk, Maria Skublewska-Paszkowska492-499
-
Analysis of methods for simulating character encounters in a game with RPG elements
Michał Zdybel, Jakub Smołka500-507
-
Analysis of the efficiency of Apex and Java languages and related technologies in performing database operations
Marcin Janczarek, Konrad Lewicki, Jakub Smołka508-514
Main Article Content
DOI
Authors
Abstract
The paper presents a comparative analysis of the performance of machine learning models and one filter method used for semantic segmentation of the coronary vessels based on the source coronary angiographic image. Seven machine learning models were tested: UNet3+, AngioNet, Reg-SA-UNet++, EfficientUNet++ B5, SE-RegUNet 4GF, SE-RegUNet 16GF, FR-UNet and one filter method, which was implemented as part of the paper. Despite the impossibility of determining the exact hierarchy of model performance, based on the results of statistical tests, the model that presented the best results with accuracy of 97,7% was distinguished – FR-UNet and the model that showed the lowest quality – UNet3+.
Keywords:
References
[1] The top 10 causes of death, https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death, [06.01.2025].
[2] A. F. Frangi, W. J. Niessen, K. L. Vincken, M. A. Viergever, Multiscale vessel enhancement filtering, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 1496 (1998) 130–137, https://doi.org/10.1007/BFB0056195.
[3] H. Fazlali, N. Karimi, S. Soroushmehr, S. Samavi, B. Nallamothu, H. Derksen, K. Najarian, Robust catheter identification and tracking in X-ray angiographic sequences, In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (2015) 7901–7904.
[4] M. T. Dehkordi, A. M. D. Hoseini, S. Sadri, H. Soltanianzadeh, Local feature fitting active contour for segmenting vessels in angiograms, IET Computer Vision 8(3) (2014) 161–170, https://doi.org/10.1049/IET-CVI.2013.0083.
[5] B. Felfelian, H. Fazlali, N. Karimi, S. Soroushmehr, S. Samavi, B. Nallamothu, K. Najarían, Vessel segmentation in low contrast X-ray angiogram images, In 2016 IEEE International Conference on Image Processing (ICIP) (2016) 375–379.
[6] A. Hernandez-Vela, C. Gatta, S. Escalera, L. Igual, V. Martin-Yuste, M. Sabate, Accurate coronary centerline extraction, caliber estimation and catheter detection in angiographies, IEEE Transactions on Information Technology in Biomedicine 16(6) (2012) 1332–1340, https://doi.org/10.1109/TITB.2012.2220781.
[7] O. Ronneberger, P. Fisher, T. Brox, U-Net: Convolutional Networks for Biomedical Image Segmentation, IEEE Access 9 (2015) 16591–16603, https://doi.org/10.1007/978-3-319-24574-4_28.
[8] H. Huang, L. Lin, R. Tong, H. Hu, Q. Zhang, Y. Iwamoto, UNet 3+: A Full-Scale Connected UNet for Medical Image Segmentation, In International Conference on Acoustics, Speech, and Signal Processing (ICASSP) IEEE (2020) 1055–1059.
[9] Z. Zhou, M. Rahman Siddiquee, N. Tajbakhsh, J. Liang, Unet++: A nested u-net architecture for medical image segmentation, In: Stoyanov, D.,et al. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. DLMIA ML-CDS 2018 2018. Lecture Notes in Computer Science(), Springer 11045 (2018) 3–11, https://doi.org/10.1007/978-3-030-00889-5_1.
[10] W. Liu, H. Yang, T. Tian, Z. Cao, X. Pan, W. Xu, Y. Jin, F. Gao, Full-Resolution Network and Dual-Threshold Iteration for Retinal Vessel and Coronary Angiograph Segmentation, IEEE Journal of Biomedical and Health Informatics 26(9) (2022) 4623–4634, https://doi.org/10.1109/JBHI.2022.3188710.
[11] I. Radosavovic, R. P. Kosaraju, R. Girshick, K. He, P. Dollár, Designing Network Design Spaces, In Conference on Computer Vision and Pattern Recognition (CVPR) IEEE/CVF (2020) 10425–10433.
[12] C. Niu, O. Gao, W. Lu, W. Liu, and T. Lai, Reg-SA-UNet++: A Lightweight Landslide Detection Network Based on Single-Temporal Images Captured Postlandslide, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 15 (2022) 9746–9759, https://doi.org/10.1109/JSTARS.2022.3219897.
[13] S. Chang, C. Lin, W. Wang, K. Hsu, Y. Wu, C. Liu, Y. Fann, Optimizing ensemble U-Net architectures for robust coronary vessel segmentation in angiographic images, Scientific Reports 14(1) (2024) 1–11, https://doi.org/10.1038/s41598-024-57198-5.
[14] K. Iyer, C. Najarian, A. Fattah, C. Arthurs, S. Soroushmehr, V. Subban, M. Sankardas, R. Nadakuditi, B. Nallamothu, C. Figueroa, AngioNet: a convolutional neural network for vessel segmentation in X-ray angiography, Scientific Reports 11(1) (2021) 1–13, https://doi.org/10.1038/s41598-021-97355-8.
[15] F. Cervantes-Sanchez, I. Cruz-Aceves, A. Hernandez-Aguirre, M. A. Hernandez-Gonzalez, S. E. Solorio-Meza, Automatic segmentation of coronary arteries in X-ray angiograms using multiscale analysis and artificial neural networks, Applied Sciences (Switzerland) 9(24) (2019) 5507, https://doi.org/10.3390/app9245507.
[16] C. Zhao, A. Vij, S. Malhotra, J. Tang, H. Tang, D. Pienta, Z. Xu, W. Zhou, Automatic extraction and stenosis evaluation of coronary arteries in invasive coronary angiograms, Computers in Biology and Medicine 136 (2021) 104667, https://doi.org/10.1016/J.COMPBIOMED.2021.104667
[17] M. N. Menezes, J. Lourenço-Silva, B. Silva, T. Rodrigues, A. R. G. Francisco, P. C. Ferreira, A. L. Oliveira, F. J. Pinto, Development of deep learning segmentation models for coronary X-ray angiography: Quality assessment by a new global segmentation score and compari-son with human performance, Revista Portu-guesa de Cardiologia 41(12) (2022) 1011–1021, https://doi.org/10.1016/J.REPC.2022.04.001
[18] OpenCV - Open Computer Vision Library, https://opencv.org/, [04.05.2025]
[19] Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli, Image quality assessment: From error visibility to structural similarity, IEEE Transactions on Image Processing 13(4) (2004) 600–612, https://doi.org/10.1109%2FTIP.2003.819861
[20] FR-UNet: Full-Resolution Network official repository, https://github.com/lseventeen/FR-UNet, [02.05.2025].
[21] KurtLin Coronary Angio Segment official repository, https://huggingface.co/spaces/KurtLin/CoronaryAngioSegment_Rescale/tree/main, [02.05.2025].
[22] M. Friedman, A Comparison of Alternative Tests of Significance for the Problem of m Rankings, 11(1) (1940) 86–92, https://doi.org/10.1214/AOMS/1177731944.
[23] P. B. Nemenyi, Distribution-Free Multiple Comparisons, PhD dissertation, Princeton University, 1963
Article Details
Abstract views: 26

