Analysis of methods for simulating character encounters in a game with RPG elements
Article Sidebar
Open full text
Issue Vol. 37 (2025)
-
Performance evaluation of Machine Learning and Deep Learning models for 5G resource allocation
Abdullah Havolli, Majlinda Fetaji371-378
-
Analysis of the use of object detection systems in edge computing
Jakub Kozłowski, Marcin Badurowicz379-390
-
Performance analysis of Jetpack Compose components in mobile applications
Adrian Kwiatkowski, Jakub Smołka391-398
-
Methods for comparing three-dimensional motion trajectories
Tomasz Waldemar Samorow, Maria Skublewska-Paszkowska399-404
-
Performance and scalability analysis of monolithic and microservice architectures in social networks
Viacheslav Chernohor405-409
-
Comparative analysis of methods for identifying tree structures of coronary vessels
Kacper Liżewski, Małgorzata Charytanowicz410-417
-
Websites accessibility assessment of voivodeship cities in Poland
Kacper Czajka, Maria Skublewska-Paszkowska418-425
-
Analysis of ORM framework approaches for Node.js
Serhii Zhadko-Bazilevych426-430
-
Analysis of performance optimization methods for 3D games in the Unity environment
Maciej Potręć, Marcin Badurowicz431-435
-
The impact of AI use on the performance of chess engines
Jakub Król, Jakub Smołka436-442
-
Evaluating the effectiveness of selected tools in recognizing emotions from facial photos
Klaudiusz Wierzbowski443-450
-
Performance analysis of the GraphQL API creation technologies using Spring Boot and NestJS
Jakub Maciej Tkaczyk, Beata Pańczyk451-456
-
Comparative Performance Analysis of RabbitMQ and Kafka Message Queue Systems in Spring Boot and ASP.NET Environments
Filip Kamiński, Radosław Kłonica, Beata Pańczyk457-462
-
Analysis of current threats and security measures used in web applications on the example of Symfony, Express, and Spring Boot
Karol Kurowski, Magdalena Kramek463-469
-
The use of machine learning to classify symbols on cultural monuments to identify their origin and historical period.
Igor Pajura, Sylwester Korga470-475
-
Investigating Machine Learning Algorithms for Stroke Occurrence Prediction
Kazeem B. Adedeji, Titilayo A. Ogunjobi, Thabane H. Shabangu, Joshua A. Omowaye476-483
-
Comparative performance analysis of Spring Boot and Quarkus frameworks in Java applications
Grzegorz Szymanek, Jakub Smołka484-491
-
Influence of activation function in deep learning for cutaneous melanoma identification
Adrian Szymczyk, Maria Skublewska-Paszkowska492-499
-
Analysis of methods for simulating character encounters in a game with RPG elements
Michał Zdybel, Jakub Smołka500-507
-
Analysis of the efficiency of Apex and Java languages and related technologies in performing database operations
Marcin Janczarek, Konrad Lewicki, Jakub Smołka508-514
Main Article Content
DOI
Authors
Abstract
This paper investigates algorithms that predict the outcome of a duel in a game with RPG elements and determine the losses incurred. The aim is to evaluate the effectiveness of the following approaches: based on Lanchester's laws and stochastic, using the Monte Carlo method. Verification was carried out through manual gameplay and comparison of the obtained results with those predicted by the algorithms, measuring their accuracy with the MAPE. The analysis showed greater efficiency and stability of the Monte Carlo algorithm, while the Lanchester model turned out to be less reliable in one of the cases.
Keywords:
References
[1] R. Hoffmann, T. Protasowicki, Modelowanie pola walki z zastosowaniem koncepcji dynamiki systemowej, Biuletyn Instytutu Systemów Informatycznych 12 (2013) 29-34.
[2] M. Kress, Lanchester models for irregular warfare, Mathematics 8(5) (2020) 737, https://doi.org/10.3390/math8050737.
[3] N. J. MacKay, Lanchester combat models, Mathematics Today 42 (2006) 170-173, https://doi.org/10.48550/arXiv.math/0606300.
[4] K. Y. Lin, N. J. MacKay, The optimal policy for the one-against-many heterogeneous Lanchester model, Operations Research Letters 42(6-7) (2014) 473-477, https://doi.org/10.1016/j.orl.2014.08.008.
[5] K. Y. Lin, New results on a stochastic duel game with each force consisting of heterogeneous units, Naval Research Logistics (NRL) 61(1) (2014) 56-65, https://doi.org/10.1002/nav.21566.
[6] N. J. MacKay, Lanchester models for mixed forces with semi-dynamical target allocation, Journal of the Operational Research Society 60(10) (2009) 1421-1427, https://doi.org/10.1057/jors.2008.97.
[7] S. G. Coulson, Lanchester modelling of intelligence in combat, IMA Journal of Management Mathematics 30(2) (2019) 149-164, https://doi.org/10.1093/imaman/dpx014.
[8] M. J. Kearney, R. J. Martin, On a stochastic version of Lanchester’s model of combat, arXiv preprint arXiv:1905.03122 (2019), https://doi.org/10.48550/arXiv.1905.03122.
[9] M. Kostić, A. Jovanović, Lanchester’s differential equations as operational command decision making tools, Serbian Journal of Management 18(1) (2023) 71-92, http://dx.doi.org/10.5937/sjm18-39699.
[10] O. Batarseh, D. Singham, Interval-based simulation to model input uncertainty in stochastic Lanchester models, Military Operations Research 18(1) (2013) 61–75, http://www.jstor.org/stable/24838472.
[11] D. P. Kroese, R. Y. Rubinstein, Monte Carlo methods, WIREs Computational Statistics 4(1) (2012) 48–58, https://doi.org/10.1002/wics.194.
[12] M. McCartney, The solution of Lanchester’s equations with inter-battle reinforcement strategies, Physica A: Statistical Mechanics and its Applications 586 (2022) 126477, https://doi.org/10.1016/j.physa.2021.126477.
[13] Ł. Gałka, P. Karczmarek, D. Czerwiński, Application of Monte Carlo algorithms with neural network-based intermediate area to the Thousand Card Game, In: L. Rutkowski, R. Scherer, M. Korytkowski, W. Pedrycz, R. Tadeusiewicz, J. M. Zurada, (eds) Artificial Intelligence and Soft Computing. Lecture Notes in Computer Science, Springer 14125 (2023) 68-77, https://doi.org/10.1007/978-3-031-42505-9_7.
[14] G. E. M. Long, D. Perez-Liebana, S. Samothrakis, Balancing Wargames through predicting unit point costs, In 2023 IEEE Conference on Games (CoG) (2023) 1–8, https://doi.org/10.1109/CoG57401.2023.10333152.
[15] M. Flanagan, D. Lambert, T. C. Lipscombe, A. Northey, I. M. Robinson, Lanchester’s fighting strength as a battle outcome predictor applied to a simple fire and manoeuvre wargame, In Recent Advances in Monte Carlo Methods, IntechOpen (2024), https://doi.org/10.5772/intechopen.1002384.
Article Details
Abstract views: 19

