Evaluating the effectiveness of selected tools in recognizing emotions from facial photos
Article Sidebar
Open full text
Issue Vol. 37 (2025)
-
Performance evaluation of Machine Learning and Deep Learning models for 5G resource allocation
Abdullah Havolli, Majlinda Fetaji371-378
-
Analysis of the use of object detection systems in edge computing
Jakub Kozłowski, Marcin Badurowicz379-390
-
Performance analysis of Jetpack Compose components in mobile applications
Adrian Kwiatkowski, Jakub Smołka391-398
-
Methods for comparing three-dimensional motion trajectories
Tomasz Waldemar Samorow, Maria Skublewska-Paszkowska399-404
-
Performance and scalability analysis of monolithic and microservice architectures in social networks
Viacheslav Chernohor405-409
-
Comparative analysis of methods for identifying tree structures of coronary vessels
Kacper Liżewski, Małgorzata Charytanowicz410-417
-
Websites accessibility assessment of voivodeship cities in Poland
Kacper Czajka, Maria Skublewska-Paszkowska418-425
-
Analysis of ORM framework approaches for Node.js
Serhii Zhadko-Bazilevych426-430
-
Analysis of performance optimization methods for 3D games in the Unity environment
Maciej Potręć, Marcin Badurowicz431-435
-
The impact of AI use on the performance of chess engines
Jakub Król, Jakub Smołka436-442
-
Evaluating the effectiveness of selected tools in recognizing emotions from facial photos
Klaudiusz Wierzbowski443-450
-
Performance analysis of the GraphQL API creation technologies using Spring Boot and NestJS
Jakub Maciej Tkaczyk, Beata Pańczyk451-456
-
Comparative Performance Analysis of RabbitMQ and Kafka Message Queue Systems in Spring Boot and ASP.NET Environments
Filip Kamiński, Radosław Kłonica, Beata Pańczyk457-462
-
Analysis of current threats and security measures used in web applications on the example of Symfony, Express, and Spring Boot
Karol Kurowski, Magdalena Kramek463-469
-
The use of machine learning to classify symbols on cultural monuments to identify their origin and historical period.
Igor Pajura, Sylwester Korga470-475
-
Investigating Machine Learning Algorithms for Stroke Occurrence Prediction
Kazeem B. Adedeji, Titilayo A. Ogunjobi, Thabane H. Shabangu, Joshua A. Omowaye476-483
-
Comparative performance analysis of Spring Boot and Quarkus frameworks in Java applications
Grzegorz Szymanek, Jakub Smołka484-491
-
Influence of activation function in deep learning for cutaneous melanoma identification
Adrian Szymczyk, Maria Skublewska-Paszkowska492-499
-
Analysis of methods for simulating character encounters in a game with RPG elements
Michał Zdybel, Jakub Smołka500-507
-
Analysis of the efficiency of Apex and Java languages and related technologies in performing database operations
Marcin Janczarek, Konrad Lewicki, Jakub Smołka508-514
Main Article Content
DOI
Authors
Abstract
Emotion recognition from facial images has become a key area in computer vision and affective computing. Deep learning models such as convolutional neural networks and vision transformers have shown high potential in this domain. In this study, the performance of two representative architectures, ResNet-50, a convolutional neural networks based model, and ViT-B/16, a transformer-based model, is evaluated on the widely used Facial Expression Recognition 2013 dataset. Both models are trained using data augmentation and regularization techniques to enhance generalization. Their effectiveness is assessed using metrics including accuracy, precision, recall, and F1-score, alongside a detailed examination of confusion matrices. The observed differences in classification performance across emotion categories highlight the influence of architectural design on model behavior. The obtained results serve as a reference point for selecting appropriate deep learning architectures.
Keywords:
References
[1] M. Dhuheir, A. Albaseer, E. Baccour, A. Erbad, M. Abdallah, M. Hamdi, Emotion Recognition for Healthcare Surveillance Systems Using Neural Networks: A Survey, In 2021 International Wireless Communications and Mobile Computing Conference (IWCMC) (2021) 681–687, https://doi.org/10.1109/IWCMC51323.2021.9498861.
[2] T. Olajumoke, B. Al-Bander, Emotion-aware psychological first aid: Integrating BERT-based emotional distress detection with Psychological First Aid-Generative Pre-Trained Transformer chatbot for mental health support, Cognitive Computation and Systems 7(1) (2025) e12116, https://doi.org/10.1049/ccs2.12116.
[3] B. C. Ko, A Brief Review of Facial Emotion Recognition Based on Visual Information, Sensors 18(2) (2018) 401, https://doi.org/10.3390/s18020401.
[4] K. O’Shea, R. Nash, An Introduction to Convolutional Neural Networks, arXiv preprint arXiv:1511.08458 (2015), https://doi.org/10.48550/arXiv.1511.08458.
[5] M. Krichen, Convolutional Neural Networks: A Survey, Computers 12(8) (2023) 151, https://doi.org/10.3390/computers12080151.
[6] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, N. Houlsby, An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, In International Conference on Learning Representations (2021) 2010.11929, https://doi.org/10.48550/arXiv.2010.11929.
[7] Y. Liu, Y. Zhang, Y. Wang, F. Hou, J. Yuan, J. Tian, Y. Zhang, Z. Shi, J. Fan, Z. He, A Survey of Visual Transformers, IEEE Transactions on Neural Networks and Learning Systems 35(6) (2024) 7478–7498, https://doi.org/10.1109/TNNLS.2022.3227717.
[8] A. Krizhevsky, I. Sutskever, G. E. Hinton, ImageNet classification with deep convolutional neural networks, Communications of the ACM 60(6) (2017) 84–90, https://doi.org/10.1145/3065386.
[9] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, H. Jégou, Training data-efficient image transformers & distillation through attention, In International conference on machine learning 139 (2021) 10347–10357, https://doi.org/10.48550/arXiv.2012.12877.
[10] K. Islam, Recent Advances in Vision Transformer: A Survey and Outlook of Recent Work, arXiv preprint arXiv:2203.01536 (2023), https://doi.org/10.48550/arXiv.2203.01536.
[11] Y. Wang, Y. Deng, Y. Zheng, P. Chattopadhyay, L. Wang, Vision Transformers for Image Classification: A Comparative Survey, Technologies 13(1) (2025) 32, https://doi.org/10.3390/technologies13010032.
[12] P. Giannopoulos, I. Perikos, I. Hatzilygeroudis, Deep Learning Approaches for Facial Emotion Recognition: A Case Study on FER-2013, Advances in Hybridization of Intelligent Methods, Springer (2018) 1–16, https://doi.org/10.1007/978-3-319-66790-4_1.
[13] H. Mikami, H. Suganuma, P. U-chupala, Y. Tanaka, Y. Kageyama, Massively distributed SGD: ImageNet/ResNet-50 Training in a Flash, arXiv preprint arXiv:1811.05233 (2019), https://doi.org/10.48550/arXiv.1811.05233.
[14] P. Powroźnik, Polish emotional speech recognition using artifical neural network, Advances in Science and Technology Research Journal 8(24) (2014) 24–27, https://doi.org/10.12913/22998624/562.
[15] P. Powroźnik, D. Czerwiński, Spectral methods in Polish emotional speech recognition, Advances in Science and Technology Research Journal 10(32) (2016) 73–81, https://doi.org/10.12913/22998624/65138.
[16] I.J. Goodfellow, D. Erhan, P. L. Carrier, A. Courville, M. Mirza, B. Hamner, W. Cukierski, Y. Tang, D. Thaler, D.-H. Lee, Y. Zhou, C. Ramaiah, F. Feng, R. Li, X. Wang, D. Athanasakis, J. Shawe-Taylor, M. Milakov, J. Park, R. Ionescu, M. Popescu, C. Grozea, J. Bergstra, J. Xie, L. Romaszko, B. Xu, Z. Chuang, Y. Bengio, Challenges in Representation Learning: A report on three machine learning contests, In International Conference on Neural Information Processing (ICONIP) (2013) 117–124, https://doi.org/10.48550/arXiv.1307.0414.
[17] M. A. Altaha, I. Jarraya, T. M. Hamdani, A. M. Alimi, Facial Expression Recognition based on ArcFace Features and TinySiamese Network, In 2023 International Conference on Cyberworlds (CW) (2023) 24–31, https://doi.org/10.1109/CW58918.2023.00014.
[18] H. Sheng, M. Lau, Optimising Facial Expression Recognition: Comparing ResNet Architectures for Enhanced Performance, Proceedings of the 11th International Conference of Control, Dynamic Systems, and Robotics (CDSR) (2024) 123, https://doi.org/10.11159/cdsr24.123.
[19] P. Soni, H. Jain, P. Bharti, A.K. Dubey, Identification of Facial Expressions using Deep Neural Networks, Fusion: Practice and Applications 2(1) (2020) 22–30, https://doi.org/10.54216/FPA.020101.
[20] H. Li, Q. Li, End-to-End Training for Compound Expression Recognition, Sensors 20(17) (2020) 1–25, https://doi.org/10.3390/s20174727.
[21] S. Bobojanov, B.M. Kim, M. Arabboev, S. Begmatov, Comparative Analysis of Vision Transformer Models for Facial Emotion Recognition Using Augmented Balanced Datasets, Applied Sciences 13(22) (2023) 12271, https://doi.org/10.3390/app132212271.
[22] J. Soni, N. Prabakar, H. Upadhyay, Vision Transformer-Based Emotion Detection in HCI for Enhanced Interaction, In 15th International Conference on Intelligent Human Computer Interaction (IHCI) (2023) 76–86, https://doi.org/10.1007/978-3-031-53827-8_8.
[23] H. Song, Facial Expression Recognition with ViT Considering All Tokens towards More Informative Self-attention Outputs, Highlights in Science, Engineering and Technology 41 (2023) 72–79, https://doi.org/10.54097/hset.v41i.6745.
[24] M. Bie, H. Xu, Y. Gao, K. Song, X. Che, Swin-FER: Swin Transformer for Facial Expression Recognition, Applied Sciences 14(14) (2024) 6125, https://doi.org/10.3390/app14146125.
[25] K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) 770–778, https://doi.org/10.1109/CVPR.2016.90.
[26] K. He, X. Zhang, S. Ren, J. Sun, Identity Mappings in Deep Residual Networks, In Computer Vision–ECCV 2016: 14th European Conference (2016) 630–645, https://doi.org/10.1007/978-3-319-46493-0_38.
[27] F. X. Gaya-Morey, C. Manresa-Yee, C. Martinie, J. M. Buades-Rubio, Evaluating Facial Expression Recognition Datasets for Deep Learning: A Benchmark Study with Novel Similarity Metrics, arXiv preprint arXiv:2503.20428 (2025), https://doi.org/10.48550/arXiv.2503.20428.
[28] M. Buda, A. Maki, M. A. Mazurowski, A systematic study of the class imbalance problem in convolutional neural networks, Neural Networks 106 (2018) 249–259, https://doi.org/10.1016/j.neunet.2018.07.011.
[29] C. Shorten, T. M. Khoshgoftaar, A survey on Image Data Augmentation for Deep Learning, Journal of Big Data 6(1) (2019) 1–48, https://doi.org/10.1186/s40537-019-0197-0.
[30] M. Sokolova, G. Lapalme, A systematic analysis of performance measures for classification tasks, Information Processing & Management 45(4) (2009) 427–437, https://doi.org/10.1016/j.ipm.2009.03.002.
[31] P. Machart, L. Ralaivola, Confusion Matrix Stability Bounds for Multiclass Classification, arXiv preprint arXiv:1202.6221 (2012), https://doi.org/10.48550/arXiv.1202.6221.
[32] S. Sathyanarayanan, B. R. Tantri, Confusion Matrix-Based Performance Evaluation Metrics, African Journal of Biomedical Research 27(4S) (2024) 4023–4031, https://doi.org/10.53555/AJBR.v27i4S.4345.
[33] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, ImageNet: A large-scale hierarchical image database, In 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2009) 248–255, https://doi.org/10.1109/CVPR.2009.5206848.
[34] Z. Mai, A. Chowdhury, P. Zhang, C.-H. Tu, H.-Y. Chen, V. Pahuja, T. Berger-Wolf, S. Gao, C. Stewart, Y. Su, W.-L. Chao, Fine-Tuning is Fine, if Calibrated, Advances in Neural Information Processing Systems 37 (2024) 136084–136119, https://doi.org/10.48550/arXiv.2409.16223.
[35] L. Prechelt, Early Stopping - But When?, Neural Networks: Tricks of the trade (2002) 55–69, https://doi.org/10.1007/3-540-49430-8_3.
Article Details
Abstract views: 25

