COMPUTER AIDED ASSEMBLY PLANNING USING MS EXCEL SOFTWARE – A CASE STUDY
Jolanta Brzozowska
jolantabrzozowska.89@gmail.comInternational Tobacco Machinery Poland, Radom (Poland)
Arkadiusz Gola
Lublin University of Technology, Faculty of Mechanical Engineering, Department of Production Computerisation and Robotisation, Lublin (Poland)
Abstract
The issue of planning assembly operations remains crucial decision-making area for many of manufacturing companies. It becomes particularly significant in case of small and medium enterprises that perform unit or small-scale production, where the option of applying specialized software is often very limited – both due to high purchase price, but also due to its applicability to single unit manufacturing, that is executed based on individual customer orders. The present article describes the possibility of applying the MS Excel spreadsheet in the planning of machine assembly processes. It emphasises, in particular, the method for using the spreadsheet in subsequent stages of the process, and the identification of possible causes that have impact on problems with the planning process. We performed our analysis on the basis of actual data from one of the machine industry enterprises that manufactures in central Poland.
Keywords:
assembly, production planning, support, spreadsheet, MS ExcelReferences
Benjaafar, S., & El Hafsi, M. (2006). Production and inventory control of a single product assemble-to-order system with multiple customer classes. Management Science, 52(12), 1896–1912. https://doi.org/10.1287/mnsc.1060.0588
DOI: https://doi.org/10.1287/mnsc.1060.0588
Google Scholar
Ciesla, B., & Mleczko, J. (2021). Practical application of fuzzy logic in production control systems of engineer to order SMEs. Applied Computer Science, 17(1), 17-25. https://doi.org/10.23743/acs-2021-02
Google Scholar
Danilczuk, W., & Gola, A. (2020). Computer-Aided Material Demand Planning Using ERP Systems and Business Intelligence Technology. Applied Computer Science, 16(3), 42–55. https://doi.org/10.23743/acs-2020-20
Google Scholar
ElHafsi, M. (2009). Optimal integrated production and inventory control of an assemble-to-order system with multiple non-unitary demand classes. European Journal of Operational Research, 194(1), 127–142. https://doi.org/10.1016/j.ejor.2007.12.007
DOI: https://doi.org/10.1016/j.ejor.2007.12.007
Google Scholar
Gola, A. (2014). Economic Aspects of Manufacturing Systems Design. Actual Problems of Economics, 156(6), 205–212.
Google Scholar
Gyulai, D., & Monostori, L. (2017). Capacity management of modular assembly systems. Journal of Manufacturing Systems, 43(1), 88-99. https://doi.org/10.1016/j.jmsy.2017.02.008
DOI: https://doi.org/10.1016/j.jmsy.2017.02.008
Google Scholar
Gyulai, D., Kadar, B., & Monostori, L. (2014). Capacity planning and resource allocation in assembly systems consisting of dedicated and Reconfigurable lines. Procedia CIRP, 25, 185–191. https://doi.org/10.1016/j.procir.2014.10.028
DOI: https://doi.org/10.1016/j.procir.2014.10.028
Google Scholar
Ju, F., & Li, J. (2014). A Bernoulli model of selective assembly systems. IFAC Proceedings Volumes, 47(3), 1692-1697. https://doi.org/10.3182/20140824-6-ZA-1003.00525
DOI: https://doi.org/10.3182/20140824-6-ZA-1003.00525
Google Scholar
Ju, F., Li, J., & Deng, W. (2017). Selective assembly system with unreliable Bernoulli machines and finite buffers. IEEE Transactions on Automation Science and Engineering, 14(1), 171–184. https://doi.org/10.1109/TASE.2016.2604371
DOI: https://doi.org/10.1109/TASE.2016.2604371
Google Scholar
Kamath, R., & Sarkar, E. (2020). The Engineer… No Longer a Person, but a Number of an Excel Sheet – Enterprise Resource Planning and Commoditisation of Labour. Global Labour Journal, 11(2), 103–117. https://doi.org/10.15173/glj.v11i2.4101
DOI: https://doi.org/10.15173/glj.v11i2.4101
Google Scholar
Li, J., Blumenfeld, D.E, Huang, N., & Alden, J.M. (2009). Throughput analysis of production systems: Recent advances and future topics. International Journal of Production Research, 47(14), 3823–3851. https://doi.org/10.1080/00207540701829752
DOI: https://doi.org/10.1080/00207540701829752
Google Scholar
Manitz, M. (2008). Queueing-model based analysis of assembly lines with finite buffers and general service times. Computers & Operations Research, 35(8), 2520-2536. https://doi.org/10.1016/j.cor.2006.12.016
DOI: https://doi.org/10.1016/j.cor.2006.12.016
Google Scholar
Pang, Z. (2015). Optimal control of a single-product assemble-to-order system with multiple demand classes and backordering. IEEE Transactions on Automatic Control, 60(2), 480–484. https://doi.org/10.1109/TAC.2014.2328451
DOI: https://doi.org/10.1109/TAC.2014.2328451
Google Scholar
Paprocka, I., Krenczyk, D., & Burduk, A. (2021). The Method of Production Scheduling with Uncertaintes Using the Ants Colony Optimisation. Applied Sciences-Basel, 11(1), 171. https://doi.org/10.3390/app11010171
DOI: https://doi.org/10.3390/app11010171
Google Scholar
Reiman, M.I., & Wang, Q. (2015). Asymptotically optimal inventory control for assemble-to-order system with identical lead times. Operations Research, 63(3), 489-749. https://doi.org/10.1287/opre.2015.1372
DOI: https://doi.org/10.1287/opre.2015.1372
Google Scholar
Sobaszek, Ł., Gola, A., & Kozłowski, E. (2017), Application of survival function in robust scheduling of production jobs. In Proceedings of the 2017 Federated Conference on Computer Science and Information Systems (FEDCSIS) (pp. 575–578). ACSIS. https://doi.org/10.15439/2017F276
DOI: https://doi.org/10.15439/2017F276
Google Scholar
Świć, A., & Gola, A. (2013). Economic Analysis of Casing Parts Production in a Flexible Manufacturing System. Actual Problems of Economics, 141(3), 526–533.
Google Scholar
Tarigan, Z.J.H., Siagian, H., & Jie, F. (2021). Impact of Enhanced Enterprise Resource Planning (ERP) on Firm Performance through Green Supply Chain Management. Sustainability, 13(8), 4358. https://doi.org/10.3390/su13084358
DOI: https://doi.org/10.3390/su13084358
Google Scholar
Wikarek, J., Sitek, P., & Nielsen, P. (2019). Model of decision support for the configuration of manufacturing system. IFAC PapersOnLine, 52(13), 826–831. https://doi.org/10.1016/j.ifacol.2019.11.232
DOI: https://doi.org/10.1016/j.ifacol.2019.11.232
Google Scholar
Authors
Jolanta Brzozowskajolantabrzozowska.89@gmail.com
International Tobacco Machinery Poland, Radom Poland
Authors
Arkadiusz GolaLublin University of Technology, Faculty of Mechanical Engineering, Department of Production Computerisation and Robotisation, Lublin Poland
Statistics
Abstract views: 827PDF downloads: 81
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
Most read articles by the same author(s)
- Jolanta BRZOZOWSKA, Jakub PIZOŃ, Gulzhan BAYTIKENOVA, Arkadiusz GOLA, Alfiya ZAKIMOVA, Katarzyna PIOTROWSKA, DATA ENGINEERING IN CRISP-DM PROCESS PRODUCTION DATA – CASE STUDY , Applied Computer Science: Vol. 19 No. 3 (2023)
- Wojciech DANILCZUK, Arkadiusz GOLA, COMPUTER-AIDED MATERIAL DEMAND PLANNING USING ERP SYSTEMS AND BUSINESS INTELLIGENCE TECHNOLOGY , Applied Computer Science: Vol. 16 No. 3 (2020)
- Piotr WITTBRODT, Iwona ŁAPUŃKA, Gulzhan BAYTIKENOVA, Arkadiusz GOLA, Alfiya ZAKIMOVA, IDENTIFICATION OF THE IMPACT OF THE AVAILABILITY FACTOR ON THE EFFICIENCY OF PRODUCTION PROCESSES USING THE AHP AND FUZZY AHP METHODS , Applied Computer Science: Vol. 18 No. 4 (2022)
- Arkadiusz GOLA, Łukasz WIECHETEK, MODELLING AND SIMULATION OF PRODUCTION FLOW IN JOB-SHOP PRODUCTION SYSTEM WITH ENTERPRISE DYNAMICS SOFTWARE , Applied Computer Science: Vol. 13 No. 4 (2017)
Similar Articles
- Gamze Ogcu KAYA, Ali TURKYILMAZ, INTERMITTENT DEMAND FORECASTING USING DATA MINING TECHNIQUES , Applied Computer Science: Vol. 14 No. 2 (2018)
- Janette BREZINOVÁ, Ján VIŇÁŠ, Dagmar DRAGANOVSKÁ, Anna GUZANOVÁ, Jakub BREZINA, POSSIBILITIES OF RENOVATION FUNCTIONAL SURFACES OF EQUIPMENTS IN THE MECHANICAL ENGINEERING INDUSTRY , Applied Computer Science: Vol. 14 No. 2 (2018)
- Jakub ANCZARSKI, Adrian BOCHEN, MArcin GŁĄB, Mikolaj JACHOWICZ, Jacek CABAN, Radosław CECHOWICZ, A METHOD OF VERIFYING THE ROBOT'S TRAJECTORY FOR GOALS WITH A SHARED WORKSPACE , Applied Computer Science: Vol. 18 No. 1 (2022)
- Damian KOLNY, Dorota WIĘCEK, Paweł ZIOBRO, Martin KRAJČOVIČ, APPLICATION OF A COMPUTER TOOL MONITORING SYSTEM IN CNC MACHINING CENTRES , Applied Computer Science: Vol. 13 No. 4 (2017)
- Maria TOMASIKOVA, Frantisek BRUMERČÍK, Aleksander NIEOCZYM, DESIGN AND DYNAMICS MODELING FOR ELECTRIC VEHICLE , Applied Computer Science: Vol. 13 No. 3 (2017)
- Marian JANCZAREK, Oleksij BULYANDRA, COMPUTER AIDED THERMAL PROCESSES IN TECHNICAL SPACES , Applied Computer Science: Vol. 13 No. 2 (2017)
- Svetlana RATNER, Pavel RATNER, DEA-BASED DYNAMIC ASSESSMENT OF REGIONAL ENVIRONMENTAL EFFICIENCY , Applied Computer Science: Vol. 13 No. 2 (2017)
- Lukasz DZIAK, Malgorzata PLECHAWSKA-WÓJCIK, THE USE OF UNITY 3D IN A SERIOUS GAME DEDICATED TO DEVELOPMENT OF FIREARM HANDLING SKILLS , Applied Computer Science: Vol. 13 No. 2 (2017)
- Paweł BAŁON, Edward REJMAN, Robert SMUSZ, Janusz SZOSTAK, Bartłomiej KIEŁBASA, HIGH SPEED MILLING IN THIN-WALLED AIRCRAFT STRUCTURES , Applied Computer Science: Vol. 14 No. 2 (2018)
- Irena NOWOTYŃSKA, Stanisław KUT, COMPARATIVE ANALYSIS OF THE IMPACT OF DIE DESIGN ON ITS LOAD AND DISTRIBUTION OF STRESS DURING EXTRUSION , Applied Computer Science: Vol. 14 No. 4 (2018)
You may also start an advanced similarity search for this article.