DIAGNOSTIC FACTORS FOR OPENED AND CLOSED KINEMATIC CHAIN OF VIBROARTHROGRAPHY SIGNALS

Anna MACHROWSKA

a.machrowska@pollub.pl
Lublin University of Technology, Faculty of Mechanical Engineering, Department of Machine Design and Mechatronics, Nadbystrzycka 36, 20-618 Lublin (Poland)

Robert KARPIŃSKI


Lublin University of Technology, Faculty of Mechanical Engineering, Department of Machine Design and Mechatronics, Nadbystrzycka 36, 20-618 Lublin (Poland)

Przemysław KRAKOWSKI


Orthopedic Department, Łęczna Hospital, Krasnystawska 52, 21-010 Łęczna (Poland)

Józef JONAK


* Lublin University of Technology, Faculty of Mechanical Engineering, Department of Machine Design and Mechatronics, Nadbystrzycka 36, 20-618 Lublin (Poland)

Abstract

The paper presents results of preliminary research of vibroarthrography signals recorded from one healthy volunteer. The tests were carried out for the open and closed kinematic chain in the range of motion 90° - 0° - 90°. Analysis included initial signal filtration using the EMD algorithm. The aim was to investigate the occurrence of differences in the values of selected energy and statistical parameters for the cases studied.  


Keywords:

EMD, EEMD, knee joint, vibration, kinetic chain

Adouni, M., & Shirazi-Adl, A. (2009). Knee joint biomechanics in closed-kinetic-chain exercises. Computer Methods in Biomechanics and Biomedical Engineering, 12(6), 661–670. https://doi.org/10.1080/10255840902828375
DOI: https://doi.org/10.1080/10255840902828375   Google Scholar

Alickovic, E., Kevric, J., & Subasi, A. (2018). Performance evaluation of empirical mode decomposition, discrete wavelet transform, and wavelet packed decomposition for automated epileptic seizure detection and prediction. Biomedical Signal Processing and Control, 39, 94–102. https://doi.org/10.1016/j.bspc.2017.07.022
DOI: https://doi.org/10.1016/j.bspc.2017.07.022   Google Scholar

Barcellona, M. G., & Morrissey, M. C. (2016). The effect of open kinetic chain knee extensor resistance training at different training loads on anterior knee laxity in the uninjured. Manual Therapy, 22, 1–8. https://doi.org/10.1016/j.math.2015.12.011
DOI: https://doi.org/10.1016/j.math.2015.12.011   Google Scholar

Charnley, J. (1955). Kinesiology of the human body under normal and pathological conditions. The Journal of Bone and Joint Surgery. British Volume, 37–B(4), 736–737. https://doi.org/10.1302/0301-620X.37B4.736
DOI: https://doi.org/10.1302/0301-620X.37B4.736   Google Scholar

Cohen, Z. A., Roglic, H., Grelsamer, R. P., Henry, J. H., Levine, W. N., Van Mow, C., & Ateshian, G. A. (2001). Patellofemoral Stresses during Open and Closed Kinetic Chain Exercises: An Analysis Using Computer Simulation. The American Journal of Sports Medicine, 29(4), 480–487. https://doi.org/10.1177/03635465010290041701
DOI: https://doi.org/10.1177/03635465010290041701   Google Scholar

Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N.-Ch., Tung, Ch. Ch., & Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454(1971), 903–995. https://doi.org/10.1098/rspa.1998.0193
DOI: https://doi.org/10.1098/rspa.1998.0193   Google Scholar

Jonak, J., Machrowska, A., Podgórski, J., & Bęc, J. (2016). Identification of the operating parameters for the mechanical systeIdentification system using EMD algorithm. MATEC Web of Conferences, 83, 05001. https://doi.org/10.1051/matecconf/20168305001
DOI: https://doi.org/10.1051/matecconf/20168305001   Google Scholar

Karpiński, R., Machrowska, A., & Maciejewski, M. (2019). Application of acoustic signal processing methods in detecting differences between open and closed kinematic chain movement for the knee joint. Applied Computer Science, 15(1), 36–48. https://doi.org/10.23743/acs-2019-03
  Google Scholar

Kolotkov, D. Y., Anfinogentov, S. A., & Nakariakov, V. M. (2016). Empirical mode decomposition analysis of random processes in the solar atmosphere. Astronomy & Astrophysics, 592, A153. https://doi.org/10.1051/0004-6361/201628306
DOI: https://doi.org/10.1051/0004-6361/201628306   Google Scholar

Luque-Seron, J. A., & Medina-Porqueres, I. (2016). Anterior Cruciate Ligament Strain In Vivo: A Systematic Review. Sports Health: A Multidisciplinary Approach, 8(5), 451–455. https://doi.org/10.1177/1941738116658006
DOI: https://doi.org/10.1177/1941738116658006   Google Scholar

Machrowska, A., & Jonak, J. (2018). xEMD procedures as a data – Assisted filtering method. AIP Conference Proceedings, 1922, 120007. https://doi.org/10.1063/1.5019122
DOI: https://doi.org/10.1063/1.5019122   Google Scholar

Maciejewski, M. (2015). Zastosowanie i ograniczenia technologii informacyjnych w diagnostyce medycznej. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 1, 66–72.
DOI: https://doi.org/10.5604/20830157.1148052   Google Scholar

Maciejewski, M., Surtel, W., & Dzida, G. (2015). Human ECG signal parameters estimation during controlled physical activity. In R. S. Romaniuk (Ed.), Proc. SPIE 9662, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments (96621P ). https://doi.org/10.1117/12.2205811
DOI: https://doi.org/10.1117/12.2205811   Google Scholar

Powers, C. M., Bolgla, L. A., Callaghan, M. J., Collins, N., & Sheehan, F. T. (2012). Patellofemoral Pain: Proximal, Distal, and Local Factors—2nd International Research Retreat, August 31–September 2, 2011, Ghent, Belgium. Journal of Orthopaedic & Sports Physical Therapy, 42(6), A1–A54. https://doi.org/10.2519/jospt.2012.0301
DOI: https://doi.org/10.2519/jospt.2012.0301   Google Scholar

Sanchis-Alfonso, V. (2014). Holistic approach to understanding anterior knee pain. Clinical implications. Knee Surgery, Sports Traumatology, Arthroscopy, 22(10), 2275–2285. https://doi.org/10.1007/s00167-014-3011-8
DOI: https://doi.org/10.1007/s00167-014-3011-8   Google Scholar

Sanchis-Alfonso, V., & Dye, S. F. (2017). How to Deal With Anterior Knee Pain in the Active Young Patient. Sports Health: A Multidisciplinary Approach, 9(4), 346–351. https://doi.org/10.1177/1941738116681269
DOI: https://doi.org/10.1177/1941738116681269   Google Scholar

Witvrouw, E., Danneels, L., van Tiggelen, D., Willems, T. M., & Cambier, D. (2004). Open versus Closed Kinetic Chain Exercises in Patellofemoral Pain: A 5-Year Prospective Randomized Study. The American Journal of Sports Medicine, 32(5), 1122–1130. https://doi.org/10.1177/0363546503262187
DOI: https://doi.org/10.1177/0363546503262187   Google Scholar

Yaslan, Y., & Bican, B. (2017). Empirical mode decomposition based denoising method with support vector regression for time series prediction: A case study for electricity load forecasting. Measurement, 103, 52–61. https://doi.org/10.1016/j.measurement.2017.02.007
DOI: https://doi.org/10.1016/j.measurement.2017.02.007   Google Scholar

Download


Published
2019-09-30

Cited by

MACHROWSKA, A., KARPIŃSKI, R., KRAKOWSKI, P., & JONAK, J. . (2019). DIAGNOSTIC FACTORS FOR OPENED AND CLOSED KINEMATIC CHAIN OF VIBROARTHROGRAPHY SIGNALS. Applied Computer Science, 15(3), 34–44. https://doi.org/10.23743/acs-2019-19

Authors

Anna MACHROWSKA 
a.machrowska@pollub.pl
Lublin University of Technology, Faculty of Mechanical Engineering, Department of Machine Design and Mechatronics, Nadbystrzycka 36, 20-618 Lublin Poland

Authors

Robert KARPIŃSKI 

Lublin University of Technology, Faculty of Mechanical Engineering, Department of Machine Design and Mechatronics, Nadbystrzycka 36, 20-618 Lublin Poland

Authors

Przemysław KRAKOWSKI 

Orthopedic Department, Łęczna Hospital, Krasnystawska 52, 21-010 Łęczna Poland

Authors

Józef JONAK 

* Lublin University of Technology, Faculty of Mechanical Engineering, Department of Machine Design and Mechatronics, Nadbystrzycka 36, 20-618 Lublin Poland

Statistics

Abstract views: 150
PDF downloads: 24


License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.


Most read articles by the same author(s)