APPLICATION OF THE MATRIX FACTOR ANALYSIS METHOD FOR DETERMINING PARAMETERS OF THE OBJECTIVE FUNCTION FOR TRANSPORT RISK MINIMIZATION


Abstract

The paper regards a common transport problem with a non-classic optimization criterion to minimize transportation risks. It demonstrates that the risk parameters of the function could be found through the factor analysis method. Besides, considering that the problem contains several points of sending and delivering loads, the method is dealt with as a matrix. The research also regards the algorithm of matrix factor analysis application for determining parameters of the objective function for the problem to be solved. The survey results in a new method to construct the objective function for the optimization problem with probability parameters. It generally assists in suggesting a formal solution to such problems, foremost due to particular software.


Keywords

factor analysis; objective function of optimization; transportation risk

Boyd K. C.: Factor analysis. In The Routledge Handbook of Research Methods in the Study of Religion. Taylor and Francis, 2013, 204–216 [http://doi.org/10.4324/9780203154281-22].

Chalmers J., Armour M.: The Delphi technique. In Handbook of Research Methods in Health Social Sciences. Springer, Singapore 2019, 715–735 [http://doi.org/10.1007/978-981-10-5251-4_99]. DOI: https://doi.org/10.1007/978-981-10-5251-4_99

Díaz-Parra O., Ruiz-Vanoye J. A., Bernábe Loranca B., Fuentes-Penna A., Barrera-Cámara R.A.: A survey of transportation problems. Journal of Applied Mathematics. Hindawi Publishing Corporation 2014, 848129 [http://doi.org/10.1155/2014/848129]. DOI: https://doi.org/10.1155/2014/848129

Freund R. J., Wilson W. J., Mohr D. L.: Data and Statistics. In Statistical Methods, 2010, 1–65 [http://doi.org/10.1016/b978-0-12-374970-3.00001-9]. DOI: https://doi.org/10.1016/B978-0-12-374970-3.00001-9

Honcharov А., Mogilei S.: Solving multimodal transportation problems by different program means. Bulletin of Cherkasy State Technological University 3/2020, 67–74.

Klami A., Virtanen S., Leppaaho E., Kaski S.: Group Factor Analysis. IEEE Transactions on Neural Networks and Learning Systems 26(9)/2015, 2136–2147 [http://doi.org/10.1109/TNNLS.2014.2376974]. DOI: https://doi.org/10.1109/TNNLS.2014.2376974

Privarova R.: Operational analysis tools in solving transport task. Perner’s contacts XI(2)/2016, 82–89.

Virtanen S., Klami A., Khan S. A., Kaski, S.: Bayesian group factor analysis. Proceedings of the 15th AISTATS, JMLR W&CP 22/2012, 1269–1277.

Zabolotnii S., Mogilei S.: The methods for determining the parameters of the objective function of multimodal transportation risk. Proceedings of V International Scientific-Practical Conference “ITEST-2020”, Cherkasy 2020, 114–115.

Zhao S., Gao C., Mukherjee S., Engelhardt B. E.: Bayesian group factor analysis with structured sparsity. Journal of Machine Learning Research 17/2016, 1–47.

Download

Published : 2021-03-31


Zabolotnii, S., & Mogilei, S. (2021). APPLICATION OF THE MATRIX FACTOR ANALYSIS METHOD FOR DETERMINING PARAMETERS OF THE OBJECTIVE FUNCTION FOR TRANSPORT RISK MINIMIZATION. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 11(1), 40-43. https://doi.org/10.35784/iapgos.2578

Serhii Zabolotnii  zabolotniua@gmail.com
Cherkasy State Business-College  Ukraine
http://orcid.org/0000-0003-0242-2234
Sergii Mogilei 
Rauf Ablyazov East European University  Ukraine
http://orcid.org/0000-0002-9296-6827