APPLICATION OF THE MATRIX FACTOR ANALYSIS METHOD FOR DETERMINING PARAMETERS OF THE OBJECTIVE FUNCTION FOR TRANSPORT RISK MINIMIZATION
Article Sidebar
Open full text
Issue Vol. 11 No. 1 (2021)
-
THE SYSTEM FOR COMPLEX MAGNETIC SUSCEPTIBILITY MEASUREMENT OF NANOPARTICLES WITH 3D PRINTED CARCASS FOR INTEGRATED RECEIVE COILS
Mateusz Midura, Przemysław Wróblewski, Damian Wanta, Grzegorz Domański, Mateusz Stosio, Jacek Kryszyn, Waldemar T. Smolik4-9
-
MAGNETOELECTRIC COUPLING MEASUREMENT TECHNIQUES IN MULTIFERROIC MATERIALS
Jakub Grotel10-14
-
METHODS FOR DETECTING FIRES IN ECOSYSTEMS USING LOW-RESOLUTION SPACE IMAGES
Valerii Shvaiko, Olena Bandurka, Vadym Shpuryk, Yevhen V. Havrylko15-19
-
GENERATING FIRE-PROOF CURTAINS BY EXPLOSION-PRODUCTION OF WATER AEROSOL AS AN ELEMENT OF FIRE-SAFETY ENGINEERING
Grzegorz Śmigielski20-23
-
METHODS FOR ASSESSMENT AND FORECASTING OF ELECTROMAGNETIC RADIATION LEVELS IN URBAN ENVIRONMENTS
Denys Bakhtiiarov, Oleksandr Lavrynenko, Nataliia Lishchynovska, Ivan Basiuk, Tetiana Prykhodko24-27
-
METHOD FOR DETERMINING THE ACTUAL PRESSURE VALUE IN A MV VACUUM INTERRUPTER
Michał Lech, Damian Kostyła28-31
-
OVERVIEW OF FEATURE SELECTION METHODS USED IN MALIGNANT MELANOMA DIAGNOSTICS
Magdalena Michalska32-35
-
DEVELOPING SOLUTION FOR USING ARTIFICIAL INTELLIGENCE TO OBTAIN MORE ACCURATE RESULTS OF THE BASIC PARAMETERS OF RADIO SIGNAL PROPAGATION
Andrii Shchepak, Volodimir Parkhomenko, Vyacheslav Parkhomenko36-39
-
APPLICATION OF THE MATRIX FACTOR ANALYSIS METHOD FOR DETERMINING PARAMETERS OF THE OBJECTIVE FUNCTION FOR TRANSPORT RISK MINIMIZATION
Serhii Zabolotnii, Sergii Mogilei40-43
-
DESCRIPTION OF ALGORITHMS FOR BALANCING NUMERICAL MATRICES AND THEIR DIVISION INTO HIERARCHICAL LEVELS ACCORDING TO THEIR TYPE AND COMPLEXITY
Yuriy Khanas, Michał Borecki44-49
-
POLYPARAMETRIC BLOCK CODING
Julia Milova, Yuri Melnik50-53
-
NO-CODE APPLICATION DEVELOPMENT ON THE EXAMPLE OF LOGOTEC APP STUDIO PLATFORM
Monika Moskal54-57
-
THE TRAINING APPLICATION BASED ON VR INTERACTION SCENARIOS – WITH EXAMPLES FOR LOGISTICS
Wojciech Wlodyka, Dariusz Bober58-61
-
INVESTIGATION OF THE DEPENDENCE OF THE STRUCTURE OF SHIFT INDEXES VECTORS ON THE PROPERTIES OF RING CODES IN THE MOBILE NETWORKS OF THE INTERNET OF THINGS
Vladislav Kravchenko, Olena Hryshchenko, Viktoriia Skrypnik, Hanna Dudarieva62-64
Archives
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
-
Vol. 10 No. 4
2020-12-20 16
-
Vol. 10 No. 3
2020-09-30 22
-
Vol. 10 No. 2
2020-06-30 16
-
Vol. 10 No. 1
2020-03-30 19
-
Vol. 9 No. 4
2019-12-16 20
-
Vol. 9 No. 3
2019-09-26 20
-
Vol. 9 No. 2
2019-06-21 16
-
Vol. 9 No. 1
2019-03-03 13
Main Article Content
DOI
Authors
Abstract
The paper regards a common transport problem with a non-classic optimization criterion to minimize transportation risks. It demonstrates that the risk parameters of the function could be found through the factor analysis method. Besides, considering that the problem contains several points of sending and delivering loads, the method is dealt with as a matrix. The research also regards the algorithm of matrix factor analysis application for determining parameters of the objective function for the problem to be solved. The survey results in a new method to construct the objective function for the optimization problem with probability parameters. It generally assists in suggesting a formal solution to such problems, foremost due to particular software.
Keywords:
References
Boyd K. C.: Factor analysis. In The Routledge Handbook of Research Methods in the Study of Religion. Taylor and Francis, 2013, 204–216 [http://doi.org/10.4324/9780203154281-22].
Chalmers J., Armour M.: The Delphi technique. In Handbook of Research Methods in Health Social Sciences. Springer, Singapore 2019, 715–735 [http://doi.org/10.1007/978-981-10-5251-4_99]. DOI: https://doi.org/10.1007/978-981-10-5251-4_99
Díaz-Parra O., Ruiz-Vanoye J. A., Bernábe Loranca B., Fuentes-Penna A., Barrera-Cámara R.A.: A survey of transportation problems. Journal of Applied Mathematics. Hindawi Publishing Corporation 2014, 848129 [http://doi.org/10.1155/2014/848129]. DOI: https://doi.org/10.1155/2014/848129
Freund R. J., Wilson W. J., Mohr D. L.: Data and Statistics. In Statistical Methods, 2010, 1–65 [http://doi.org/10.1016/b978-0-12-374970-3.00001-9]. DOI: https://doi.org/10.1016/B978-0-12-374970-3.00001-9
Honcharov А., Mogilei S.: Solving multimodal transportation problems by different program means. Bulletin of Cherkasy State Technological University 3/2020, 67–74.
Klami A., Virtanen S., Leppaaho E., Kaski S.: Group Factor Analysis. IEEE Transactions on Neural Networks and Learning Systems 26(9)/2015, 2136–2147 [http://doi.org/10.1109/TNNLS.2014.2376974]. DOI: https://doi.org/10.1109/TNNLS.2014.2376974
Privarova R.: Operational analysis tools in solving transport task. Perner’s contacts XI(2)/2016, 82–89.
Virtanen S., Klami A., Khan S. A., Kaski, S.: Bayesian group factor analysis. Proceedings of the 15th AISTATS, JMLR W&CP 22/2012, 1269–1277.
Zabolotnii S., Mogilei S.: The methods for determining the parameters of the objective function of multimodal transportation risk. Proceedings of V International Scientific-Practical Conference “ITEST-2020”, Cherkasy 2020, 114–115.
Zhao S., Gao C., Mukherjee S., Engelhardt B. E.: Bayesian group factor analysis with structured sparsity. Journal of Machine Learning Research 17/2016, 1–47.
Article Details
Abstract views: 322
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
