Objects features extraction by singular projections of data tensor to matrices
Article Sidebar
Open full text
Issue Vol. 15 No. 3 (2025)
-
Objects features extraction by singular projections of data tensor to matrices
Yuriy Bunyak, Roman Kvуetnyy, Olga Sofina, Volodymyr Kotsiubynskyi5-9
-
A hybrid approach combining generalized normal distribution optimization algorithm and fuzzy C-means with Calinski-Harabasz index for clustering optimization
Moatasem Mahmood Ibrahim, Omar Saber Qasim, Talal Fadhil Hussein10-14
-
Method of hybrid logical classification trees based on group selection of discrete features
Igor Povkhan, Andrii Leheza, Oksana Mulesa, Olena Melnyk, Aliya Kintonova15-21
-
Optimal control of electric energy quality, based on lexicographic approach
Yurii Voitiuk, Anatolii Volotskyi, Iuliia Shullie, Maiia Kovalchuk, Laura Duissembayeva22-28
-
Implementation of energy-saving modes for electro-radiation drying of oil-containing material using automation tools
Borys Kotov, Roman Kalinichenko, Serhii Stepanenko, Vasyl Lukach, Volodymyr Hryshchenko, Alvian Kuzmych, Yurii Pantsyr, Ihor Garasymchuk, Volodymyr Vasylyuk29-32
-
Methods and means of laser layer Jones matrix mapping of polycrystalline films of biological fluids
Olexander Ushenko, Iryna Soltys, Olexander Dubolazov, Sergii Pavlov, Vasyl Garasym, Alona Kolomiiets, Bakhyt Yeraliyeva33-37
-
Alzheimer’s disease classification from MRI using vision transformer
Mohith Reddy Kandi, Sree Vijaya Lakshmi Kothapalli, Sivamsh Pavan Rajanala, Suvarna Vani Koneru, Vishnu Pramukh Vattikunta38-44
-
Enhancing early Parkinson’s disease diagnosis through handwriting analysis
Asma Ouabd, Abdelilah Jilbab, Achraf Benba, Ahmed Hammouch45-49
-
Biomechanical foundations and benefits of active orthoses in the treatment of idiopathic scoliosis
Patrycja Tymińska-Wójcik50-54
-
Application of facial recognition technologies for enhancing control in information security systems
Nurzhigit Smailov, Rashida Kadyrova, Kamila Abdulina, Fatima Uralova, Nurgul Kubanova, Akezhan Sabibolda55-58
-
IoT system with frequency converters of physical quantities on FPGA
Oleksandr V. Osadchuk, Iaroslav O. Osadchuk, Valentyn K. Skoshchuk59-66
-
Research on the possibility of reducing the error in measuring the phase shift of radio signals
Sergey Matvienko, Grygoriy Tymchyk, Konstantin Vonsevych, Nataliia Stelmakh67-72
-
Implementation of fiber-optic sensing systems in structural health monitoring of concrete
Nurzhigit Smailov, Akmaral Tolemanova, Amir Aziskhan, Beibarys Sekenov, Akezhan Sabibolda73-76
-
Modelling the working cycle of a heat pump scroll compressor
Bohdan Sydorchuk, Oleksandr Naumchuk77-80
-
Modeling of interception parking lots
Larysa Gumeniuk, Volodymyr Lotysh, Pavlo Humeniuk, Oleksandr Reshetylo, Yuriy Syrota81-86
-
Development and research of W-parameters of potentially unstable four-poles based on the mathematical model of W-parameters of field-effect transistors in the high-frequency range
Oleksandr Voznyak, Kateryna Kovalova, Yurii Polievoda, Liudmyla Kolianovska, Svitlana Ovsienko, Alla Solomon87-90
-
Detection confidential information by large language models
Oleh Deineka, Oleh Harasymchuk, Andrii Partyka, Yurii Dreis, Yuliia Khokhlachova, Yuriy Pepa91-99
-
Ethical simulation of a phishing attack
Justyna Kęczkowska, Karol Wykrota, Mirosław Płaza100-104
-
The effectiveness of machine learning in detecting phishing websites
Jacek Łukasz Wilk-Jakubowski, Aleksandra Sikora, Dawid Maciejski105-109
-
Contemporary approaches to integrating AI agents into library information processes
Mariia Sokil, Andriy Andrukhiv110-116
-
Development of a reinforcement learning-based adaptive scheduling algorithm for commercial smart kitchens
Konrad Kabala, Piotr Dziurzanski, Agnieszka Konrad117-122
-
Optimizing deep learning techniques with stacking BiLSTM and BiGRU models for gold price prediction
Iqbal Kharisudin, Nike Yustina Oktaviani123-130
-
Websites with virtual church tours in Poland – usability and accessibility analysis
Michał Mitura, Mariusz Dzieńkowski131-137
-
Study of feed granulation process based on system analysis – justification of optimization criteria
Mahil Isa Mammadov138-142
Archives
-
Vol. 15 No. 4
2025-12-20 27
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
Main Article Content
DOI
Authors
Abstract
The problem of multidimensional tensor objects features extraction in a manner of matrices is considered. The tensor’ elements Higher Order Singular Value Decomposition (SVD) is presented as the d-SVD which includes SVD of the tensor reshaped as a matrix and SVDs of reduced size of the previous SVDs vectors reshaped as matrices. The decomposition allows to create Singular Projections of tensor to a sum of one-rank tensors in selected dimensions. The projections of tensor to matrices by weighted and direct averaging in SVD’ vectors subspace is investigated numerically. The extracted by projection features of a series of image objects are used to develop the optimized Inverse Feature Filters for the objects recognition.
Keywords:
References
[1] Bergqvist G., Larsson E. G.: Higher-order singular value decomposition: Theory and an application. IEEE Signal Processing Magazine 27(3), 2010, 151–154 [https://doi.org/10.1109/MSP.2010.936030]. DOI: https://doi.org/10.1109/MSP.2010.936030
[2] de Lathauwer L., de Moor B., Vandewalle J.: A multilinear singular value decomposition. SIAM Journal on Matrix Analysis and Applications 21(4), 2000, 1253–1278. DOI: https://doi.org/10.1137/S0895479896305696
[3] Kvуetnyy R., et al.: Inverse correlation filters of objects features with optimized regularization for image processing. Proc. SPIE 12476, 124760Q, 2022 [https://doi.org/10.1117/12.2664497]. DOI: https://doi.org/10.1117/12.2664497
[4] Oseledets I. V.: Tensor-train decomposition. SIAM Journal on Scientific Computing 33(5), 2011, 2295–2317 [https://doi.org/10.1137/090752286]. DOI: https://doi.org/10.1137/090752286
[5] Panagakis Y., et al.: Тensor methods in computer vision and deep learning. Proc. IEEE 105(5), 2021, 863–890 [https://doi.org/10.1109/JPROC.2021.3074329]. DOI: https://doi.org/10.1109/JPROC.2021.3074329
[6] Phan A. H., Cichocki A.: Tensor decompositions for feature extraction and classification of high dimensional datasets. Nonlinear Theory and Its Applications – IEICE 2010, 37–68 [https://doi.org/10.1587/nolta.1.37]. DOI: https://doi.org/10.1587/nolta.1.37
[7] Savas V, Eldén V.: Handwritten digit classification using higher order singular value decomposition. Pattern Recognition 40(3), 993–1003, 2007. DOI: https://doi.org/10.1016/j.patcog.2006.08.004
[8] Wang M., Song Y. S.: Tensor decompositions via two-mode higher-order SVD (HOSVD). 20th International Conference on Artificial Intelligence and Statistics – PMLR 54, 2017, 614–622.
[9] Zhu X., et al.: Feature Correlation Filter for Face Recognition. Lee S.W., Li S.Z. (eds): Advances in Biometrics. ICB 2007. Lecture Notes in Computer Science 4642. Springer, Berlin, Heidelberg, 2007 [https://doi.org/10.1007/978-3-540-74549-5_9]. DOI: https://doi.org/10.1007/978-3-540-74549-5_9
Article Details
Abstract views: 190

