Biomechanical foundations and benefits of active orthoses in the treatment of idiopathic scoliosis
Article Sidebar
Open full text
Issue Vol. 15 No. 3 (2025)
-
Objects features extraction by singular projections of data tensor to matrices
Yuriy Bunyak, Roman Kvуetnyy, Olga Sofina, Volodymyr Kotsiubynskyi5-9
-
A hybrid approach combining generalized normal distribution optimization algorithm and fuzzy C-means with Calinski-Harabasz index for clustering optimization
Moatasem Mahmood Ibrahim, Omar Saber Qasim, Talal Fadhil Hussein10-14
-
Method of hybrid logical classification trees based on group selection of discrete features
Igor Povkhan, Andrii Leheza, Oksana Mulesa, Olena Melnyk, Aliya Kintonova15-21
-
Optimal control of electric energy quality, based on lexicographic approach
Yurii Voitiuk, Anatolii Volotskyi, Iuliia Shullie, Maiia Kovalchuk, Laura Duissembayeva22-28
-
Implementation of energy-saving modes for electro-radiation drying of oil-containing material using automation tools
Borys Kotov, Roman Kalinichenko, Serhii Stepanenko, Vasyl Lukach, Volodymyr Hryshchenko, Alvian Kuzmych, Yurii Pantsyr, Ihor Garasymchuk, Volodymyr Vasylyuk29-32
-
Methods and means of laser layer Jones matrix mapping of polycrystalline films of biological fluids
Olexander Ushenko, Iryna Soltys, Olexander Dubolazov, Sergii Pavlov, Vasyl Garasym, Alona Kolomiiets, Bakhyt Yeraliyeva33-37
-
Alzheimer’s disease classification from MRI using vision transformer
Mohith Reddy Kandi, Sree Vijaya Lakshmi Kothapalli, Sivamsh Pavan Rajanala, Suvarna Vani Koneru, Vishnu Pramukh Vattikunta38-44
-
Enhancing early Parkinson’s disease diagnosis through handwriting analysis
Asma Ouabd, Abdelilah Jilbab, Achraf Benba, Ahmed Hammouch45-49
-
Biomechanical foundations and benefits of active orthoses in the treatment of idiopathic scoliosis
Patrycja Tymińska-Wójcik50-54
-
Application of facial recognition technologies for enhancing control in information security systems
Nurzhigit Smailov, Rashida Kadyrova, Kamila Abdulina, Fatima Uralova, Nurgul Kubanova, Akezhan Sabibolda55-58
-
IoT system with frequency converters of physical quantities on FPGA
Oleksandr V. Osadchuk, Iaroslav O. Osadchuk, Valentyn K. Skoshchuk59-66
-
Research on the possibility of reducing the error in measuring the phase shift of radio signals
Sergey Matvienko, Grygoriy Tymchyk, Konstantin Vonsevych, Nataliia Stelmakh67-72
-
Implementation of fiber-optic sensing systems in structural health monitoring of concrete
Nurzhigit Smailov, Akmaral Tolemanova, Amir Aziskhan, Beibarys Sekenov, Akezhan Sabibolda73-76
-
Modelling the working cycle of a heat pump scroll compressor
Bohdan Sydorchuk, Oleksandr Naumchuk77-80
-
Modeling of interception parking lots
Larysa Gumeniuk, Volodymyr Lotysh, Pavlo Humeniuk, Oleksandr Reshetylo, Yuriy Syrota81-86
-
Development and research of W-parameters of potentially unstable four-poles based on the mathematical model of W-parameters of field-effect transistors in the high-frequency range
Oleksandr Voznyak, Kateryna Kovalova, Yurii Polievoda, Liudmyla Kolianovska, Svitlana Ovsienko, Alla Solomon87-90
-
Detection confidential information by large language models
Oleh Deineka, Oleh Harasymchuk, Andrii Partyka, Yurii Dreis, Yuliia Khokhlachova, Yuriy Pepa91-99
-
Ethical simulation of a phishing attack
Justyna Kęczkowska, Karol Wykrota, Mirosław Płaza100-104
-
The effectiveness of machine learning in detecting phishing websites
Jacek Łukasz Wilk-Jakubowski, Aleksandra Sikora, Dawid Maciejski105-109
-
Contemporary approaches to integrating AI agents into library information processes
Mariia Sokil, Andriy Andrukhiv110-116
-
Development of a reinforcement learning-based adaptive scheduling algorithm for commercial smart kitchens
Konrad Kabala, Piotr Dziurzanski, Agnieszka Konrad117-122
-
Optimizing deep learning techniques with stacking BiLSTM and BiGRU models for gold price prediction
Iqbal Kharisudin, Nike Yustina Oktaviani123-130
-
Websites with virtual church tours in Poland – usability and accessibility analysis
Michał Mitura, Mariusz Dzieńkowski131-137
-
Study of feed granulation process based on system analysis – justification of optimization criteria
Mahil Isa Mammadov138-142
Archives
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
Main Article Content
DOI
Authors
Abstract
The aim of this article is to provide a biomechanical analysis of different types of orthoses, with a particular focus on the benefits of an active sensor orthosis. The first part of the article focuses on the biomechanics of passive orthoses, which use constant corrective forces exerted by rigid brace on the patient's body. The principles of such braces, their effect on spinal alignment and the limitations of their static nature are discussed. The second part focuses on active orthoses, which integrate modern technologies, such as sensors, to dynamically adjust the corrective forces to the patient's current state. Current solutions that allow monitoring and adaptation of the brace's performance are discussed, which significantly increases the effectiveness of treatment. The final part of the article focuses on the advantages of active orthoses in scoliosis therapy compared to traditional passive orthoses. The active therapeutic approach allows the brace's action to be dynamically adapted to the patient's current needs, which increases wearing comfort and treatment effectiveness. The use of technology also enables ongoing assessment of therapy progress and better adaptation of corrective forces to the patient's individual anatomical and biomechanical characteristics.
Keywords:
References
[1] Ali A., Fontanari V., Schmölz W.: Active soft brace for scoliotic spine: A finite element study to evaluate in-brace correction. Robotics 11(2), 2022, 37. DOI: https://doi.org/10.3390/robotics11020037
[2] Archibald D., et al.: Portable biofeedback device for rehabilitating children with scoliosis between ages of 3-10 years and their posture correction. 3rd International Conference on Electronics Computer Technology 3, 2011, 234–238. DOI: https://doi.org/10.1109/ICECTECH.2011.5941744
[3] Bache B. A., Iftikhar O., Dehzangi O.: Brace treatment monitoring solution for idiopathic scoliosis patients. 16th IEEE international conference on machine learning and applications (ICMLA). IEEE, 2017, 580–585. DOI: https://doi.org/10.1109/ICMLA.2017.00-98
[4] Bansode S., et al.: Design and implementation of regulated-pressure brace with on-board control and monitoring abilities for the treatment of scoliosis. 2nd IEEE Int. Conf. on Electrical, Computer and Communication Technologies – ICECCT, 2017, 1–5. DOI: https://doi.org/10.1109/ICECCT.2017.8117983
[5] Bazzarelli M., et al.: A low power hybrid posture monitoring system. Canadian Conference on Electrical and Computer Engineering 2, 2001, 1373–1378. DOI: https://doi.org/10.1109/CCECE.2001.933652
[6] Bochenek A., Reicher M.: Anatomia człowieka, tom I: Anatomia ogólna, kości, stawu, więzadła i mięśnie. PZWL, Warszawa 1978.
[7] Bonnet V., et al.: Automatic estimate of back anatomical landmarks and 3D spine curve from a Kinect sensor. 6th IEEE International Conference on Biomedical Robotics and Biomechatronics – BioRob. IEEE, 2016, 924–929. DOI: https://doi.org/10.1109/BIOROB.2016.7523746
[8] Burwell R. G., et al.: Etiologic theories of idiopathic scoliosis: neuro-developmental concept of maturational delay of the CNS body schema ("body-in-the-brain"). Studies in Health Technology and Informatics 123, 2006, 72.
[9] Chalmers E., et al.: Development of a pressure control system for brace treatment of scoliosis. IEEE Transactions on Neural Systems and Rehabilitation Engineering 20(4), 2012, 557–563. DOI: https://doi.org/10.1109/TNSRE.2012.2192483
[10] Dehzangi O., et al.: A smart point-of-care compliance monitoring solution for brace treatment of adolescent idiopathic scoliosis patients. Smart Health 21, 2021, 100179. DOI: https://doi.org/10.1016/j.smhl.2021.100179
[11] Dehzangi O., et al.: Force and activity monitoring system for scoliosis patients wearing back braces. IEEE International Conference on Consumer Electronics (ICCE), 2018, 1–4. DOI: https://doi.org/10.1109/ICCE.2018.8326190
[12] Dehzangi O., Mohammadi M., Li Y.: Smart brace for monitoring patients with scoliosis using a multimodal sensor board solution. IEEE Healthcare Innovation Point-of-Care Technologies Conference – HI-POCT, 2016, 66–69. DOI: https://doi.org/10.1109/HIC.2016.7797698
[13] Durdle N. G., et al.: Computer graphics and imaging tools for the assessment and treatment of spinal deformities. Canadian Conference on Electrical and Computer Engineering. Engineering Innovation: Voyage of Discovery – CCECE'97. Conference Proceedings 2, 1997. DOI: https://doi.org/10.1109/CCECE.1997.608311
[14] Evans K. R., Lou E., Faulkner G.: Optimization of a low-cost force sensor for spinal orthosis applications. IEEE Transactions on Instrumentation and Measurement 62(12), 2013, 3243–3250. DOI: https://doi.org/10.1109/TIM.2013.2272202
[15] Fuss F. K., et al.: Pressure sensor system for customized scoliosis braces. Sensors 21(4), 2021, 1–19. DOI: https://doi.org/10.3390/s21041153
[16] Grycuk S., Mrozek P.: Numerical and experimental analysis of orthopedic brace for treatment of idiopathic scoliosis. Advances in Biomedical Engineering. Oficyna Wydawnicza Politechniki Białostockiej, Białystok 2023, 15–30.
[17] Hudák R., et al.: The use of matrix tactile sensors (MTS) for diagnostics of the efficiency of production, testing and application of a trunk orthosis. 13th International Symposium on Computational Intelligence and Informatics – CINTI, 2012, 299–304. DOI: https://doi.org/10.1109/CINTI.2012.6496779
[18] Hueter C.: Anatomische Studien an den Extremitaetengelenken Neugeborener und Erwachsener. Virchows Arch 25(1862), 572–599. DOI: https://doi.org/10.1515/9783112665589-020
[19] Karol L. A., et al.: Effect of compliance counseling on brace use and success in patients with adolescent idiopathic scoliosis. JBJS 98(1), 2016. DOI: https://doi.org/10.2106/JBJS.O.00359
[20] Kotwicki T., Cheneau J.: Biomechanical action of a corrective brace on thoracic idiopathic scoliosis: Cheneau 2000 orthosis. Disability and Rehabilitation: Assistive Technology 3(3), 2008, 146–153. DOI: https://doi.org/10.1080/17483100801905744
[21] Lalouani W., et al.: Energy-efficient collection of wearable sensor data through predictive sampling. Smart Health 21, 2021, 100208. DOI: https://doi.org/10.1016/j.smhl.2021.100208
[22] Lee D.: Obręcz biodrowa. Badanie i leczenie okolicy lędźwiowo-miedniczno-biodrowej. DB Publishing, Warszawa 2005.
[23] Lou E., et al.: Intelligent brace system for the treatment of scoliosis. Studies in Health Technology and Informatics 91(4), 2002, 397–400. DOI: https://doi.org/10.3233/978-1-60750-935-6-397
[24] Lou E., et al.: A system for measuring pressures exerted by braces in the treatment of scoliosis. IEEE Transactions on Instrumentation and Measurement 43(4), 1994, 661–664. DOI: https://doi.org/10.1109/19.310185
[25] Lou E., et al.: Load compliance monitor system for the treatment of scoliosis. Canadian Conference on Electrical and Computer Engineering 3, 1999, 1501–1505. DOI: https://doi.org/10.1109/CCECE.1999.804932
[26] Lou E., et al.: An objective measurement of brace usage for the treatment of adolescent idiopathic scoliosis. Medical Engineering and Physics 33(3), 2011, 290–294. DOI: https://doi.org/10.1016/j.medengphy.2010.10.016
[27] Lou E., et al.: A low power wireless load monitoring system for the treatment of scoliosis. IEEE Transactions on Instrumentation and Measurement 51(5), 2002, 908–911. DOI: https://doi.org/10.1109/TIM.2002.807792
[28] Lou E., et al.: An intelligent active brace system for the treatment of scoliosis. IEEE Transactions on Instrumentation and Measurement 53(4), 2004, 1146–1151. DOI: https://doi.org/10.1109/TIM.2004.831458
[29] Lou E., et al.: The continuous measurement of pressures exerted by braces in the treatment of scoliosis. 15th Annual International Conference of the IEEE Engineering in Medicine and Biology Societ. San Diego, 1993, 983–984. DOI: https://doi.org/10.1109/IEMBS.1993.978966
[30] Negrini S., et al.: 2016 SOSORT guidelines: Orthopaedic and rehabilitation treatment of idiopathic scoliosis during growth. Scoliosis and Spinal Disorders 13, 2018, 1. DOI: https://doi.org/10.1186/s13013-017-0145-8
[31] Negrini S., et al.: Braces for idiopathic scoliosis in adolescents. Cochrane Database of Systematic Reviews 6, 2015, CD006850. DOI: https://doi.org/10.1002/14651858.CD006850.pub3
[32] Perie D., De Gauzy J. S., Hobatho M. C.: Biomechanical evaluation of Cheneau-Toulouse-Munster brace in the treatment of scoliosis using optimisation approach and finite element method. Medical and Biological Engineering and Computing 40, 2002, 296–301. DOI: https://doi.org/10.1007/BF02344211
[33] Rigo M. D., Villagrasa M., Gallo D.: A specific scoliosis classification correlating with brace treatment: Description and reliability. Scoliosis 5(1), 2010, 1–11. DOI: https://doi.org/10.1186/1748-7161-5-1
[34] Rigo M., Jelačić M.: Brace technology thematic series: The 3D Rigo Chêneau-type brace. Scoliosis and Spinal Disorders 12(1), 2017. DOI: https://doi.org/10.1186/s13013-017-0114-2
[35] Rigo M., et al.: SOSORT consensus paper on brace action: TLSO biomechanics of correction (investigating the rationale for force vector selection). Scoliosis 1(1), 2006, 1–8. DOI: https://doi.org/10.1186/1748-7161-1-11
[36] Rigo M., Weiss H.: The Chêneau concept of bracing-Biomechanical aspects. Studies in Health Technology and Informatics 135, 2008, 303.
[37] Sardini E., Serpelloni M., Ometto M.: Smart vest for posture monitoring in rehabilitation exercises. IEEE Sensors Applications Symposium Proceedings – SAS, 2012, 161–165. DOI: https://doi.org/10.1109/SAS.2012.6166300
[38] Stokes I. A. F., Burwell R. G., Dangerfield P. H.: Biomechanical spinal growth modulation and progressive adolescent scoliosis–a test of the ‘vicious cycle’ pathogenetic hypothesis: Summary of an electronic focus group debate of the IBSE. Scoliosis 1, 2006, 1–21. DOI: https://doi.org/10.1186/1748-7161-1-16
[39] Tan Z., et al.: An automatic scoliosis diagnosis and measurement system based on deep learning. IEEE International Conference on Robotics and Biomimetics, ROBIO 2018, 439–443. DOI: https://doi.org/10.1109/ROBIO.2018.8665296
[40] Tymińska P., et al.: TLSO with Graphene Sensors – An Application to Measurements of Corrective Forces in the Prototype of Intelligent Brace. Sensors 22(11), 2022, 4015. DOI: https://doi.org/10.3390/s22114015
[41] Visser D., et al.: Computer-aided optimal design of custom scoliosis braces considering clinical and patient evaluations. Computer Methods and Programs in Biomedicine 107(3), 2012, 478–489. DOI: https://doi.org/10.1016/j.cmpb.2010.12.017
[42] Von Volkmann R.: Veilletzungen und Krankenheiten der Berwegungsorgane. Handbuch der Allgemeinen und Speciellen Chirurgs, 1882, 234–920.
[43] Wood G. I., Rigo M.: The principles and biomechanics of the Rigo Chêneau type brace. Innovations in Spinal Deformities and Postural Disorders. IntechOpen, 2017. DOI: https://doi.org/10.5772/intechopen.70381
[44] Zaborowska-Sapeta K.: Dynamika zmiany rotacji tułowia u pacjentów leczonych gorsetem typu Chêneau z powodu młodzieńczej skoliozy idiopatycznej. Uniwersytet Warmińsko-Mazurski w Olsztynie, 2013.
Article Details
Abstract views: 107

