Methods and means of laser layer Jones matrix mapping of polycrystalline films of biological fluids
Article Sidebar
Open full text
Issue Vol. 15 No. 3 (2025)
-
Objects features extraction by singular projections of data tensor to matrices
Yuriy Bunyak, Roman Kvуetnyy, Olga Sofina, Volodymyr Kotsiubynskyi5-9
-
A hybrid approach combining generalized normal distribution optimization algorithm and fuzzy C-means with Calinski-Harabasz index for clustering optimization
Moatasem Mahmood Ibrahim, Omar Saber Qasim, Talal Fadhil Hussein10-14
-
Method of hybrid logical classification trees based on group selection of discrete features
Igor Povkhan, Andrii Leheza, Oksana Mulesa, Olena Melnyk, Aliya Kintonova15-21
-
Optimal control of electric energy quality, based on lexicographic approach
Yurii Voitiuk, Anatolii Volotskyi, Iuliia Shullie, Maiia Kovalchuk, Laura Duissembayeva22-28
-
Implementation of energy-saving modes for electro-radiation drying of oil-containing material using automation tools
Borys Kotov, Roman Kalinichenko, Serhii Stepanenko, Vasyl Lukach, Volodymyr Hryshchenko, Alvian Kuzmych, Yurii Pantsyr, Ihor Garasymchuk, Volodymyr Vasylyuk29-32
-
Methods and means of laser layer Jones matrix mapping of polycrystalline films of biological fluids
Olexander Ushenko, Iryna Soltys, Olexander Dubolazov, Sergii Pavlov, Vasyl Garasym, Alona Kolomiiets, Bakhyt Yeraliyeva33-37
-
Alzheimer’s disease classification from MRI using vision transformer
Mohith Reddy Kandi, Sree Vijaya Lakshmi Kothapalli, Sivamsh Pavan Rajanala, Suvarna Vani Koneru, Vishnu Pramukh Vattikunta38-44
-
Enhancing early Parkinson’s disease diagnosis through handwriting analysis
Asma Ouabd, Abdelilah Jilbab, Achraf Benba, Ahmed Hammouch45-49
-
Biomechanical foundations and benefits of active orthoses in the treatment of idiopathic scoliosis
Patrycja Tymińska-Wójcik50-54
-
Application of facial recognition technologies for enhancing control in information security systems
Nurzhigit Smailov, Rashida Kadyrova, Kamila Abdulina, Fatima Uralova, Nurgul Kubanova, Akezhan Sabibolda55-58
-
IoT system with frequency converters of physical quantities on FPGA
Oleksandr V. Osadchuk, Iaroslav O. Osadchuk, Valentyn K. Skoshchuk59-66
-
Research on the possibility of reducing the error in measuring the phase shift of radio signals
Sergey Matvienko, Grygoriy Tymchyk, Konstantin Vonsevych, Nataliia Stelmakh67-72
-
Implementation of fiber-optic sensing systems in structural health monitoring of concrete
Nurzhigit Smailov, Akmaral Tolemanova, Amir Aziskhan, Beibarys Sekenov, Akezhan Sabibolda73-76
-
Modelling the working cycle of a heat pump scroll compressor
Bohdan Sydorchuk, Oleksandr Naumchuk77-80
-
Modeling of interception parking lots
Larysa Gumeniuk, Volodymyr Lotysh, Pavlo Humeniuk, Oleksandr Reshetylo, Yuriy Syrota81-86
-
Development and research of W-parameters of potentially unstable four-poles based on the mathematical model of W-parameters of field-effect transistors in the high-frequency range
Oleksandr Voznyak, Kateryna Kovalova, Yurii Polievoda, Liudmyla Kolianovska, Svitlana Ovsienko, Alla Solomon87-90
-
Detection confidential information by large language models
Oleh Deineka, Oleh Harasymchuk, Andrii Partyka, Yurii Dreis, Yuliia Khokhlachova, Yuriy Pepa91-99
-
Ethical simulation of a phishing attack
Justyna Kęczkowska, Karol Wykrota, Mirosław Płaza100-104
-
The effectiveness of machine learning in detecting phishing websites
Jacek Łukasz Wilk-Jakubowski, Aleksandra Sikora, Dawid Maciejski105-109
-
Contemporary approaches to integrating AI agents into library information processes
Mariia Sokil, Andriy Andrukhiv110-116
-
Development of a reinforcement learning-based adaptive scheduling algorithm for commercial smart kitchens
Konrad Kabala, Piotr Dziurzanski, Agnieszka Konrad117-122
-
Optimizing deep learning techniques with stacking BiLSTM and BiGRU models for gold price prediction
Iqbal Kharisudin, Nike Yustina Oktaviani123-130
-
Websites with virtual church tours in Poland – usability and accessibility analysis
Michał Mitura, Mariusz Dzieńkowski131-137
-
Study of feed granulation process based on system analysis – justification of optimization criteria
Mahil Isa Mammadov138-142
Archives
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
Main Article Content
DOI
Authors
Abstract
The results of the theoretical substantiation and experimental validation of a novel laser polarization-interference method for Jones matrix mapping with digital phase layer-by-layer scanning of the object field of polycrystalline bile films are presented. Statistical analysis of the layer-by-layer maps of the real and imaginary components of the Jones matrix images has revealed a set of diagnostic markers – skewness and kurtosis – sensitive to variations in the linear and circular birefringence of the polycrystalline structure within the supramolecular networks of dehydrated bile films.
Keywords:
References
[1] Angelsky O. V., et al.: Handbook of Photonics for Biomedical Science. CRC press, 2010, 22–67.
[2] Burkovets D. N., et al.: Stokes polarimetry of biotissues. Fourth International Conference on Correlation Optics 3904, 1999, 527–533. DOI: https://doi.org/10.1117/12.370448
[3] Chen W., et al.: Extended eigenvalue calibration method for Mueller matrix polarimetry with four photoelastic modulators. Opt. Lett. 50(3), 2025, 840–843. DOI: https://doi.org/10.1364/OL.545387
[4] Garazdyuk M. S., et al.: Polarization-phase images of liquor polycrystalline films in determining time of death. Applied optics 55 (12), 2016, B67–B71 DOI: https://doi.org/10.1364/AO.55.000B67
[5] Ghosh N.: Tissue polarimetry: concepts, challenges, applications, and outlook. J. Biomed. Opt. 1, 2011, 110801. DOI: https://doi.org/10.1117/1.3652896
[6] Jacques S. L.: Polarized light imaging of biological tissues. Boas D., Pitris C., Ramanujam N. (eds.): Handbook of Biomedical Optics 2. CRC Press, 2011, 649–669.
[7] Jiao W., et al.: Analysis and optimization of the pixel saturation effect on backscattering Mueller matrix polarimetry. Opt. Lett. 50, 2025, 5069–5072. DOI: https://doi.org/10.1364/OL.567394
[8] Jóźwicki R., et al.: Automatic polarimetric system for early medical diagnosis by biotissue testing. Optica Applicata 32 (4), 2002, 603–612.
[9] Kukharchuk V. V., et al.: Information Conversion in Measuring Channels with Optoelectronic Sensors, Sensors 22(1), 2022, 271 [https://doi.org/10.3390/s22010271]. DOI: https://doi.org/10.3390/s22010271
[10] Layden D., Ghosh N., Vitkin I. A.: Quantitative polarimetry for tissue characterization and diagnosis. Wang R. K., Tuchin V. V. (eds.): Advanced Biophotonics: Tissue Optical Sectioning. CRC Press, 2013, 73–108. DOI: https://doi.org/10.1201/b15256-3
[11] Liu T., et al.: Comparative study of the imaging contrasts of Mueller matrix derived parameters between transmission and backscattering polarimetry. Biomed. Opt. Express 9(9), 2018, 4413–4428. DOI: https://doi.org/10.1364/BOE.9.004413
[12] Oberemok Ye. A., et al.: Influence of imperfections of polarization elements on measurement errors in three probing polarizations method. Proc. SPIE 6164, 2006, 61640B. DOI: https://doi.org/10.1117/12.695014
[13] Pishak V., et al.: Study of polarization structure of biospeckle fields in crosslinked tissues of human organism: 1. Vector structure of skin biospeckles. Proc. SPIE 3317, 1997, 418–424. DOI: https://doi.org/10.1117/12.295715
[14] Romanyuk A. N., et al.: Fast ray casting of function-based surfaces. Przeglad Elektrotechniczny 93(5), 2017, 83–86.
[15] Vasilevskyi O. et al: Methods for Constructing High-precision Potentiometric Measuring Instruments of Ion Activity. IEEE 41st International Conference on Electronics and Nanotechnology – ELNANO, 2022, 247–252. DOI: https://doi.org/10.1109/ELNANO54667.2022.9927128
[16] Vitkin A., Ghosh N., de Martino A.: Tissue Polarimetry. Andrews D. L. (ed.): Photonics: Scientific Foundations, Technology and Applications. John Wiley & Sons, Ltd. 2015, 239–321. DOI: https://doi.org/10.1002/9781119011804.ch7
[17] Yermolenko S., et al.: Spectropolarimetry of cancer change of biotissues. Proc. SPIE 7388, 2009, 73881D [https://doi.org/10.1117/12.853585]. DOI: https://doi.org/10.1117/12.853585
[18] Zabolotna N., et al.: Diagnostic efficiency of Mueller-matrix polarization reconstruction system of the phase structure of liver tissue. Proc. SPIE 9816, 2015, 98161E [https://doi.org/10. 1117/12.2229018]. DOI: https://doi.org/10.1117/12.2229018
[19] Zabolotna N. I., et al.: ROC analysis of informativeness of mapping of the ellipticity distributions of blood plasma films laser images polarization in the evaluation of pathological changes in the breast. Proc. SPIE 11456, 2020, 114560I. DOI: https://doi.org/10.1117/12.2569775
[20] Zhang Z., et al.: Analysis and optimization of aberration induced by oblique incidence for in-vivo tissue polarimetry. Opt. Lett. 48(23), 2023, 6136–6139. DOI: https://doi.org/10.1364/OL.501365
Article Details
Abstract views: 98

