Optimizing deep learning techniques with stacking BiLSTM and BiGRU models for gold price prediction
Article Sidebar
Open full text
Issue Vol. 15 No. 3 (2025)
-
Objects features extraction by singular projections of data tensor to matrices
Yuriy Bunyak, Roman Kvуetnyy, Olga Sofina, Volodymyr Kotsiubynskyi5-9
-
A hybrid approach combining generalized normal distribution optimization algorithm and fuzzy C-means with Calinski-Harabasz index for clustering optimization
Moatasem Mahmood Ibrahim, Omar Saber Qasim, Talal Fadhil Hussein10-14
-
Method of hybrid logical classification trees based on group selection of discrete features
Igor Povkhan, Andrii Leheza, Oksana Mulesa, Olena Melnyk, Aliya Kintonova15-21
-
Optimal control of electric energy quality, based on lexicographic approach
Yurii Voitiuk, Anatolii Volotskyi, Iuliia Shullie, Maiia Kovalchuk, Laura Duissembayeva22-28
-
Implementation of energy-saving modes for electro-radiation drying of oil-containing material using automation tools
Borys Kotov, Roman Kalinichenko, Serhii Stepanenko, Vasyl Lukach, Volodymyr Hryshchenko, Alvian Kuzmych, Yurii Pantsyr, Ihor Garasymchuk, Volodymyr Vasylyuk29-32
-
Methods and means of laser layer Jones matrix mapping of polycrystalline films of biological fluids
Olexander Ushenko, Iryna Soltys, Olexander Dubolazov, Sergii Pavlov, Vasyl Garasym, Alona Kolomiiets, Bakhyt Yeraliyeva33-37
-
Alzheimer’s disease classification from MRI using vision transformer
Mohith Reddy Kandi, Sree Vijaya Lakshmi Kothapalli, Sivamsh Pavan Rajanala, Suvarna Vani Koneru, Vishnu Pramukh Vattikunta38-44
-
Enhancing early Parkinson’s disease diagnosis through handwriting analysis
Asma Ouabd, Abdelilah Jilbab, Achraf Benba, Ahmed Hammouch45-49
-
Biomechanical foundations and benefits of active orthoses in the treatment of idiopathic scoliosis
Patrycja Tymińska-Wójcik50-54
-
Application of facial recognition technologies for enhancing control in information security systems
Nurzhigit Smailov, Rashida Kadyrova, Kamila Abdulina, Fatima Uralova, Nurgul Kubanova, Akezhan Sabibolda55-58
-
IoT system with frequency converters of physical quantities on FPGA
Oleksandr V. Osadchuk, Iaroslav O. Osadchuk, Valentyn K. Skoshchuk59-66
-
Research on the possibility of reducing the error in measuring the phase shift of radio signals
Sergey Matvienko, Grygoriy Tymchyk, Konstantin Vonsevych, Nataliia Stelmakh67-72
-
Implementation of fiber-optic sensing systems in structural health monitoring of concrete
Nurzhigit Smailov, Akmaral Tolemanova, Amir Aziskhan, Beibarys Sekenov, Akezhan Sabibolda73-76
-
Modelling the working cycle of a heat pump scroll compressor
Bohdan Sydorchuk, Oleksandr Naumchuk77-80
-
Modeling of interception parking lots
Larysa Gumeniuk, Volodymyr Lotysh, Pavlo Humeniuk, Oleksandr Reshetylo, Yuriy Syrota81-86
-
Development and research of W-parameters of potentially unstable four-poles based on the mathematical model of W-parameters of field-effect transistors in the high-frequency range
Oleksandr Voznyak, Kateryna Kovalova, Yurii Polievoda, Liudmyla Kolianovska, Svitlana Ovsienko, Alla Solomon87-90
-
Detection confidential information by large language models
Oleh Deineka, Oleh Harasymchuk, Andrii Partyka, Yurii Dreis, Yuliia Khokhlachova, Yuriy Pepa91-99
-
Ethical simulation of a phishing attack
Justyna Kęczkowska, Karol Wykrota, Mirosław Płaza100-104
-
The effectiveness of machine learning in detecting phishing websites
Jacek Łukasz Wilk-Jakubowski, Aleksandra Sikora, Dawid Maciejski105-109
-
Contemporary approaches to integrating AI agents into library information processes
Mariia Sokil, Andriy Andrukhiv110-116
-
Development of a reinforcement learning-based adaptive scheduling algorithm for commercial smart kitchens
Konrad Kabala, Piotr Dziurzanski, Agnieszka Konrad117-122
-
Optimizing deep learning techniques with stacking BiLSTM and BiGRU models for gold price prediction
Iqbal Kharisudin, Nike Yustina Oktaviani123-130
-
Websites with virtual church tours in Poland – usability and accessibility analysis
Michał Mitura, Mariusz Dzieńkowski131-137
-
Study of feed granulation process based on system analysis – justification of optimization criteria
Mahil Isa Mammadov138-142
Archives
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
Main Article Content
DOI
Authors
iqbalkharisudin@mail.unnes.ac.id
Abstract
Gold, essential in various sectors from jewelry to financial reserves, plays a crucial role as a financial asset and investment. Accurate prediction of gold prices is vital for informed investment decisions and economic management. This study utilizes a Stacking Ensemble approach to enhance gold price prediction accuracy by combining Bidirectional Long Short-Term Memory (BiLSTM) and Bidirectional Gated Recurrent Unit (BiGRU) as base learners, with Random Forest serving as the meta-learner. This method capitalizes on BiLSTM and BiGRU’s strengths in processing sequential data in both directions, capturing intricate patterns in gold price fluctuations. The dataset spans from January 1, 2020, to May 31, 2024. The results reveal that the Stacking Ensemble model with BiLSTM-BiGRU consistently outperforms other models, achieving the lowest Mean Squared Error (MSE) of 0.000, Root Mean Squared Error (RMSE) of 0.0067, Mean Absolute Error (MAE) of 0.0050, Mean Absolute Percentage Error (MAPE) of 0.0083, and a high R-squared value of 0.9984 across various lookback periods (7, 15, and 30 days). These metrics underscore the method’s effectiveness in accurately capturing and predicting gold price trends. This confirms that the Stacking Ensemble approach significantly enhances gold price prediction accuracy.
Keywords:
References
[1] Brownlee J.: Long Short-Term Memory Networks With Python: Develop Sequence Prediction Models with Deep Learning. Machine Learning Mastery. Jason Brownlee, 2017.
[2] Chung J., et al.: Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. ArXiv Preprint ArXiv:1412.3555, 2014, 1–9.
[3] Cohen G., Aiche A.: Forecasting Gold Price Using Machine Learning Methodologies. Chaos, Solitons and Fractals 175(P2), 2023, 114079 [https://doi.org/10.1016/j.chaos.2023.114079]. DOI: https://doi.org/10.1016/j.chaos.2023.114079
[4] Dang Y., et al.: A Comparative Study of Non-Deep Learning, Deep Learning, and Ensemble Learning Methods for Sunspot Number Prediction. Applied Artificial Intelligence 36(1), 2022 [https://doi.org/10.1080/08839514.2022.2074129]. DOI: https://doi.org/10.1080/08839514.2022.2074129
[5] Gbadamosi S. L., et al.: Exploring the Effectiveness of a Multilayer Neural Network Model for Gold Price Prediction. Przegląd Elektrotechniczny 3, 2024, 157–161 [https://doi.org/10.15199/48.2024.03.28]. DOI: https://doi.org/10.15199/48.2024.03.28
[6] Genuer R., Poggi J. M.: Random Forests with R. Springer Cham 2020 [https://doi.org/10.1007/978-3-030-56485-8]. DOI: https://doi.org/10.1007/978-3-030-56485-8
[7] Gu J., et al.: A Stacking Ensemble Learning Model for Monthly Rainfall Prediction in the Taihu Basin, China. Water 14(3), 2022, 1–20 [https://doi.org/10.3390/w14030492]. DOI: https://doi.org/10.3390/w14030492
[8] Hyndman R. J., Athanasopoulos G.: Forecasting: Principles and Practice. OTexts 2018.
[9] Kilimci Z. H.: Ensemble Regression-Based Gold Price (XAU/USD) Prediction. Journal of Emerging Market Finance 2(1), 2022, 7–12.
[10] Kyriakides G., Margaritis K. G.: Hands-On Ensemble Learning with Python. Build Highly Optimized Ensemble Machine Learning Models Using Scikit-Learn and Keras. Packt 2019.
[11] Li X., et al.: Resource Usage Prediction Based on BILSTM-GRU Combination Model. IEEE International Conference on Joint Cloud Computing (JCC). 2022, 9–16 [https://doi.org/10.1109/JCC56315.2022.00009]. DOI: https://doi.org/10.1109/JCC56315.2022.00009
[12] Li Y., Pan Y.: A Novel Ensemble Deep Learning Model for Stock Prediction Based on Stock Prices and News. International Journal of Data Science and Analytics 13(2), 2022, 139–49 [https://doi.org/10.1007/s41060-021-00279-9]. DOI: https://doi.org/10.1007/s41060-021-00279-9
[13] Livieris I. E., et al.: A CNN–LSTM Model for Gold Price Time-Series Forecasting. Neural Computing and Applications 32(23), 2020, 17351–17360 [https://doi.org/10.1007/s00521-020-04867-x]. DOI: https://doi.org/10.1007/s00521-020-04867-x
[14] Mulaab et al.: Air Temperature Forecasting Based on Stacking Machine Learning Model with Multi-Step Time Series. IEEE 9th Information Technology International Seminar (ITIS). 2023, 1–4 [https://doi.org/10.1109/ITIS59651.2023.10420402]. DOI: https://doi.org/10.1109/ITIS59651.2023.10420402
[15] Nwokike C., et al.: Forecasting Monthly Prices of Gold Using Artificial Neural Network. Journal of Statistical and Econometric Methods 9(3), 2020, 19–28.
[16] Rivas-Perea P., et al.: Support Vector Machines for Regression: A Succinct Review of Large-Scale and Linear Programming Formulations. International Journal of Intelligence Science 3(1), 2013, 5–14 [https://doi.org/10.4236/ijis.2013.31002]. DOI: https://doi.org/10.4236/ijis.2013.31002
[17] Schuster M., Paliwal K. K.: Bidirectional Recurrent Neural Networks. IEEE Transactions on Signal Processing 45(11), 1997, 2673–81 [https://doi.org/10.1109/78.650093]. DOI: https://doi.org/10.1109/78.650093
[18] Seabe Phumudzo L., et al.: Forecasting Cryptocurrency Prices Using LSTM, GRU, and Bi-Directional LSTM: A Deep Learning Approach. Fractal and Fractional 7(2), 2023, 203 [https://doi.org/10.3390/fractalfract7020203]. DOI: https://doi.org/10.3390/fractalfract7020203
[19] Sezer O. B., et al.: Financial Time Series Forecasting with Deep Learning: A Systematic Literature Review: 2005–2019. Applied Soft Computing Journal 90, 2020, 2005–2019 [https://doi.org/10.1016/j.asoc.2020.106181]. DOI: https://doi.org/10.1016/j.asoc.2020.106181
[20] Shaikh Z. M., Ramadass S.: Unveiling Deep Learning Powers: LSTM, BiLSTM, GRU, BiGRU, RNN Comparison. Indonesian Journal of Electrical Engineering and Computer Science 35(1), 2024, 263–273 [https://doi.org/10.11591/ijeecs.v35.i1.pp263-273]. DOI: https://doi.org/10.11591/ijeecs.v35.i1.pp263-273
[21] Song H., Choi H.: Forecasting Stock Market Indices Using the Recurrent Neural Network Based Hybrid Models: CNN-LSTM, GRU-CNN, and Ensemble Models. Applied Sciences 13(7), 2023, 4644 [https://doi.org/10.3390/app13074644]. DOI: https://doi.org/10.3390/app13074644
[22] Wesley G. Y. Y., Sufahani S.: Research Review on Time Series Forecasting of Gold Price Movement. International Journal of Multidisciplinary Research and Development 5(5), 2018, 44–49.
[23] Xu L., et al.: Deep Heuristic Evolutionary Regression Model Based on the Fusion of BiGRU and BiLSTM. Cognitive Computation 15(5), 2023, 1672–1686 [https://doi.org/10.1007/s12559-023-10135-6]. DOI: https://doi.org/10.1007/s12559-023-10135-6
[24] Yang X.: The Prediction of Gold Price Using ARIMA Model. 2nd International Conference on Social Science, Public Health and Education – SSPHE 2018. 2019, 273–276 [https://doi.org/10.2991/ssphe-18.2019.66]. DOI: https://doi.org/10.2991/ssphe-18.2019.66
[25] Ye Z., et al.: A Stacking Ensemble Deep Learning Model for Bitcoin Price Prediction Using Twitter Comments on Bitcoin. Mathematics 10(8), 2022, 1307 [https://doi.org/10.3390/math10081307]. DOI: https://doi.org/10.3390/math10081307
[26] Yurtsever M.: Gold Price Forecasting Using LSTM, Bi-LSTM and GRU. Avrupa Bilim ve Teknoloji Dergisi 31(31), 2021, 341–347 [https://doi.org/10.31590/ejosat.959405]. DOI: https://doi.org/10.31590/ejosat.959405
[27] Zhang C., Sjarif N. N. A., Ibrahim R: Deep Learning Models for Price Forecasting of Financial Time Series: A Review of Recent Advancements: 2020–2022. WilREs Data Mining and Knowledge Discovery 14(1), 2024, e1519 [https://doi.org/10.1002/widm.1519]. DOI: https://doi.org/10.1002/widm.1519
[28] Zhao Y., Deng W.: Prediction in Traffic Accident Duration Based on Heterogeneous Ensemble Learning. Applied Artificial Intelligence 36(1), 2022 [https://doi.org/10.1080/08839514.2021.2018643]. DOI: https://doi.org/10.1080/08839514.2021.2018643
Article Details
Abstract views: 186

