Alzheimer’s disease classification from MRI using vision transformer
Article Sidebar
Open full text
Issue Vol. 15 No. 3 (2025)
-
Objects features extraction by singular projections of data tensor to matrices
Yuriy Bunyak, Roman Kvуetnyy, Olga Sofina, Volodymyr Kotsiubynskyi5-9
-
A hybrid approach combining generalized normal distribution optimization algorithm and fuzzy C-means with Calinski-Harabasz index for clustering optimization
Moatasem Mahmood Ibrahim, Omar Saber Qasim, Talal Fadhil Hussein10-14
-
Method of hybrid logical classification trees based on group selection of discrete features
Igor Povkhan, Andrii Leheza, Oksana Mulesa, Olena Melnyk, Aliya Kintonova15-21
-
Optimal control of electric energy quality, based on lexicographic approach
Yurii Voitiuk, Anatolii Volotskyi, Iuliia Shullie, Maiia Kovalchuk, Laura Duissembayeva22-28
-
Implementation of energy-saving modes for electro-radiation drying of oil-containing material using automation tools
Borys Kotov, Roman Kalinichenko, Serhii Stepanenko, Vasyl Lukach, Volodymyr Hryshchenko, Alvian Kuzmych, Yurii Pantsyr, Ihor Garasymchuk, Volodymyr Vasylyuk29-32
-
Methods and means of laser layer Jones matrix mapping of polycrystalline films of biological fluids
Olexander Ushenko, Iryna Soltys, Olexander Dubolazov, Sergii Pavlov, Vasyl Garasym, Alona Kolomiiets, Bakhyt Yeraliyeva33-37
-
Alzheimer’s disease classification from MRI using vision transformer
Mohith Reddy Kandi, Sree Vijaya Lakshmi Kothapalli, Sivamsh Pavan Rajanala, Suvarna Vani Koneru, Vishnu Pramukh Vattikunta38-44
-
Enhancing early Parkinson’s disease diagnosis through handwriting analysis
Asma Ouabd, Abdelilah Jilbab, Achraf Benba, Ahmed Hammouch45-49
-
Biomechanical foundations and benefits of active orthoses in the treatment of idiopathic scoliosis
Patrycja Tymińska-Wójcik50-54
-
Application of facial recognition technologies for enhancing control in information security systems
Nurzhigit Smailov, Rashida Kadyrova, Kamila Abdulina, Fatima Uralova, Nurgul Kubanova, Akezhan Sabibolda55-58
-
IoT system with frequency converters of physical quantities on FPGA
Oleksandr V. Osadchuk, Iaroslav O. Osadchuk, Valentyn K. Skoshchuk59-66
-
Research on the possibility of reducing the error in measuring the phase shift of radio signals
Sergey Matvienko, Grygoriy Tymchyk, Konstantin Vonsevych, Nataliia Stelmakh67-72
-
Implementation of fiber-optic sensing systems in structural health monitoring of concrete
Nurzhigit Smailov, Akmaral Tolemanova, Amir Aziskhan, Beibarys Sekenov, Akezhan Sabibolda73-76
-
Modelling the working cycle of a heat pump scroll compressor
Bohdan Sydorchuk, Oleksandr Naumchuk77-80
-
Modeling of interception parking lots
Larysa Gumeniuk, Volodymyr Lotysh, Pavlo Humeniuk, Oleksandr Reshetylo, Yuriy Syrota81-86
-
Development and research of W-parameters of potentially unstable four-poles based on the mathematical model of W-parameters of field-effect transistors in the high-frequency range
Oleksandr Voznyak, Kateryna Kovalova, Yurii Polievoda, Liudmyla Kolianovska, Svitlana Ovsienko, Alla Solomon87-90
-
Detection confidential information by large language models
Oleh Deineka, Oleh Harasymchuk, Andrii Partyka, Yurii Dreis, Yuliia Khokhlachova, Yuriy Pepa91-99
-
Ethical simulation of a phishing attack
Justyna Kęczkowska, Karol Wykrota, Mirosław Płaza100-104
-
The effectiveness of machine learning in detecting phishing websites
Jacek Łukasz Wilk-Jakubowski, Aleksandra Sikora, Dawid Maciejski105-109
-
Contemporary approaches to integrating AI agents into library information processes
Mariia Sokil, Andriy Andrukhiv110-116
-
Development of a reinforcement learning-based adaptive scheduling algorithm for commercial smart kitchens
Konrad Kabala, Piotr Dziurzanski, Agnieszka Konrad117-122
-
Optimizing deep learning techniques with stacking BiLSTM and BiGRU models for gold price prediction
Iqbal Kharisudin, Nike Yustina Oktaviani123-130
-
Websites with virtual church tours in Poland – usability and accessibility analysis
Michał Mitura, Mariusz Dzieńkowski131-137
-
Study of feed granulation process based on system analysis – justification of optimization criteria
Mahil Isa Mammadov138-142
Archives
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
Main Article Content
DOI
Authors
suvarnavanik@vrsiddhartha.ac.in
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that presents significant challenges for early diagnosis and intervention. Traditional approaches for diagnosing AD using MRI images are labor-intensive and often subjective, resulting in the need for automated, accurate solutions to support clinicians in early-stage detection. This study investigates the use of vision transformer (ViT) for the classification of Alzheimer's disease stages using MRI images. By treating MRI images as sequences of tokens, ViT models capture both global and local spatial dependencies, which enhances their ability to recognize structural brain changes characteristic of AD. The model was trained on a diverse dataset containing four AD categories – Moderate Demented, Mild Demented, Very Mild Demented, and Non-Demented – achieving an overall classification accuracy of 98.9%. This result highlights the efficacy of transformer-based models in distinguishing between subtle structural brain alterations. Future directions for this study include fine-tuning the model on larger datasets and exploring the integration of multi-modal data to further support AD diagnosis and treatment strategies. The findings indicate that vision transformer have the potential to transform diagnostic imaging for neurodegenerative disorders by providing a robust, scalable, and precise tool for early AD detection.
Keywords:
References
[1] Almadhoun H. R., Abu-Naser S. S.: Classification of alzheimer’s disease using traditional classifiers with pre-trained CNN. International Journal of Academic Health and Medical Research (IJAHMR) 5(4), 2021, 17–21.
[2] Azad R., et al.: Advances in medical image analysis with vision transformers: a comprehensive review. Medical Image Analysis 91, 2024, 103000. DOI: https://doi.org/10.1016/j.media.2023.103000
[3] Dosovitskiy A.: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.
[4] Frisoni G. B., et al.: The clinical use of structural MRI in Alzheimer disease. Nature reviews neurology 6(2), 2010, 67–77. DOI: https://doi.org/10.1038/nrneurol.2009.215
[5] Hazarika R. A., et al.: An approach for classification of Alzheimer’s disease using deep neural network and brain magnetic resonance imaging (MRI). Electronics 12(3), 2023, 676. DOI: https://doi.org/10.3390/electronics12030676
[6] He K., et al.: Deep residual learning for image recognition. IEEE conference on computer vision and pattern recognition, 2016. DOI: https://doi.org/10.1109/CVPR.2016.90
[7] Jack Jr C. R., et al.: NIA‐AA research framework: toward a biological definition of Alzheimer's disease. Alzheimer's & dementia 14(4), 2018, 535–562.
[8] Khan S., et al.: Transformers in vision: A survey. ACM computing surveys (CSUR) 54(10s), 2022, 1–41. DOI: https://doi.org/10.1145/3505244
[9] Mondal A. K., et al.: xViTCOS: explainable vision transformer based COVID-19 screening using radiography. IEEE Journal of Translational Engineering in Health and Medicine 10, 2021, 1–10. DOI: https://doi.org/10.1109/JTEHM.2021.3134096
[10] Pradhan A., Gige J., Eliazer M.: Detection of Alzheimer’s disease (AD) in MRI images using deep learning. Int. J. Eng. Res. Technol 10(3), 2021, 580–585.
[11] Saleem T. J., et al.: Deep learning-based diagnosis of Alzheimer’s disease. Journal of Personalized Medicine 12(5), 2022, 815. DOI: https://doi.org/10.3390/jpm12050815
[12] Samhan L. F., et al.: Classification of Alzheimer's disease using convolutional neural networks. International Journal of Academic Information Systems Research (IJAISR) 6(3), 2022, 18–23.
[13] Sarraf S., et al.: DeepAD: Alzheimer’s disease classification via deep convolutional neural networks using MRI and fMRI. BioRxiv, 2016, 070441 [https://doi.org/10.1101/070441]. DOI: https://doi.org/10.1101/070441
[14] Sethi M., et al.: [Retracted] An Exploration: Alzheimer’s Disease Classification Based on Convolutional Neural Network. BioMed Research International 2022(1), 2022, 8739960. DOI: https://doi.org/10.1155/2022/8739960
[15] Shamrat F.M. J. M., et al.: AlzheimerNet: An effective deep learning based proposition for alzheimer’s disease stages classification from functional brain changes in magnetic resonance images. IEEE Access 11, 2023, 16376–16395. DOI: https://doi.org/10.1109/ACCESS.2023.3244952
[16] Sorour S. E., et al.: Classification of Alzheimer’s disease using MRI data based on Deep Learning Techniques. Journal of King Saud University-Computer and Information Sciences 36(2), 2024, 101940. DOI: https://doi.org/10.1016/j.jksuci.2024.101940
[17] Tanveer M., et al.: Classification of Alzheimer’s disease using ensemble of deep neural networks trained through transfer learning. IEEE Journal of Biomedical and Health Informatics 26(4), 2021, 1453–1463. DOI: https://doi.org/10.1109/JBHI.2021.3083274
[18] Wen J., et al.: Convolutional neural networks for classification of Alzheimer’s disease: Overview and reproducible evaluation. Medical image analysis 63, 2020, 101694. DOI: https://doi.org/10.1016/j.media.2020.101694
[19] World Health Organization: Dementia. 2021 [https://www.who.int/news-room/fact-sheets/detail/dementia].
[20] 2020 Alzheimer's disease facts and figures. Alzheimer's dementia 16, 2020, 391–460 [https://doi.org/10.1002/alz.12068]. DOI: https://doi.org/10.1002/alz.12068
Article Details
Abstract views: 107

