A hybrid approach combining generalized normal distribution optimization algorithm and fuzzy C-means with Calinski-Harabasz index for clustering optimization
Article Sidebar
Open full text
Issue Vol. 15 No. 3 (2025)
-
Objects features extraction by singular projections of data tensor to matrices
Yuriy Bunyak, Roman Kvуetnyy, Olga Sofina, Volodymyr Kotsiubynskyi5-9
-
A hybrid approach combining generalized normal distribution optimization algorithm and fuzzy C-means with Calinski-Harabasz index for clustering optimization
Moatasem Mahmood Ibrahim, Omar Saber Qasim, Talal Fadhil Hussein10-14
-
Method of hybrid logical classification trees based on group selection of discrete features
Igor Povkhan, Andrii Leheza, Oksana Mulesa, Olena Melnyk, Aliya Kintonova15-21
-
Optimal control of electric energy quality, based on lexicographic approach
Yurii Voitiuk, Anatolii Volotskyi, Iuliia Shullie, Maiia Kovalchuk, Laura Duissembayeva22-28
-
Implementation of energy-saving modes for electro-radiation drying of oil-containing material using automation tools
Borys Kotov, Roman Kalinichenko, Serhii Stepanenko, Vasyl Lukach, Volodymyr Hryshchenko, Alvian Kuzmych, Yurii Pantsyr, Ihor Garasymchuk, Volodymyr Vasylyuk29-32
-
Methods and means of laser layer Jones matrix mapping of polycrystalline films of biological fluids
Olexander Ushenko, Iryna Soltys, Olexander Dubolazov, Sergii Pavlov, Vasyl Garasym, Alona Kolomiiets, Bakhyt Yeraliyeva33-37
-
Alzheimer’s disease classification from MRI using vision transformer
Mohith Reddy Kandi, Sree Vijaya Lakshmi Kothapalli, Sivamsh Pavan Rajanala, Suvarna Vani Koneru, Vishnu Pramukh Vattikunta38-44
-
Enhancing early Parkinson’s disease diagnosis through handwriting analysis
Asma Ouabd, Abdelilah Jilbab, Achraf Benba, Ahmed Hammouch45-49
-
Biomechanical foundations and benefits of active orthoses in the treatment of idiopathic scoliosis
Patrycja Tymińska-Wójcik50-54
-
Application of facial recognition technologies for enhancing control in information security systems
Nurzhigit Smailov, Rashida Kadyrova, Kamila Abdulina, Fatima Uralova, Nurgul Kubanova, Akezhan Sabibolda55-58
-
IoT system with frequency converters of physical quantities on FPGA
Oleksandr V. Osadchuk, Iaroslav O. Osadchuk, Valentyn K. Skoshchuk59-66
-
Research on the possibility of reducing the error in measuring the phase shift of radio signals
Sergey Matvienko, Grygoriy Tymchyk, Konstantin Vonsevych, Nataliia Stelmakh67-72
-
Implementation of fiber-optic sensing systems in structural health monitoring of concrete
Nurzhigit Smailov, Akmaral Tolemanova, Amir Aziskhan, Beibarys Sekenov, Akezhan Sabibolda73-76
-
Modelling the working cycle of a heat pump scroll compressor
Bohdan Sydorchuk, Oleksandr Naumchuk77-80
-
Modeling of interception parking lots
Larysa Gumeniuk, Volodymyr Lotysh, Pavlo Humeniuk, Oleksandr Reshetylo, Yuriy Syrota81-86
-
Development and research of W-parameters of potentially unstable four-poles based on the mathematical model of W-parameters of field-effect transistors in the high-frequency range
Oleksandr Voznyak, Kateryna Kovalova, Yurii Polievoda, Liudmyla Kolianovska, Svitlana Ovsienko, Alla Solomon87-90
-
Detection confidential information by large language models
Oleh Deineka, Oleh Harasymchuk, Andrii Partyka, Yurii Dreis, Yuliia Khokhlachova, Yuriy Pepa91-99
-
Ethical simulation of a phishing attack
Justyna Kęczkowska, Karol Wykrota, Mirosław Płaza100-104
-
The effectiveness of machine learning in detecting phishing websites
Jacek Łukasz Wilk-Jakubowski, Aleksandra Sikora, Dawid Maciejski105-109
-
Contemporary approaches to integrating AI agents into library information processes
Mariia Sokil, Andriy Andrukhiv110-116
-
Development of a reinforcement learning-based adaptive scheduling algorithm for commercial smart kitchens
Konrad Kabala, Piotr Dziurzanski, Agnieszka Konrad117-122
-
Optimizing deep learning techniques with stacking BiLSTM and BiGRU models for gold price prediction
Iqbal Kharisudin, Nike Yustina Oktaviani123-130
-
Websites with virtual church tours in Poland – usability and accessibility analysis
Michał Mitura, Mariusz Dzieńkowski131-137
-
Study of feed granulation process based on system analysis – justification of optimization criteria
Mahil Isa Mammadov138-142
Archives
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
Main Article Content
DOI
Authors
moatasem.23csp150@student.uomosul.edu.iq
Abstract
In this paper, we propose a new hybrid approach, which combines Generalized Normal Distribution Optimization Algorithm (GNDOA) and fuzzy C-Means clustering (FCM). It is designed for processing unsupervised datasets. This idea target list the development about conventional function option and clustering techniques. The proposed GNDOA-FCM uses normalized normal distribution concept along with FCM for more accurate and efficient clustering outputs leading to accelerated detection in survey region. Calinski-Harabasz index helps finding the number of clusters that has high compactness within each cluster and also apart from other clusters. The performance of the proposed hybrid GNDOA-FCM approach is tested extensively using different benchmark datasets. The results are compared with existing clustering methods using evaluation metrics like silhouette score & feature selection accuracy. Experimental results show that the proposed method can be flexibly set to obtain higher quality of clustering and is more effective than conventional techniques.
Keywords:
References
[1] Al-Kababchee S. G. M., Qasim O. S., Algamal Z. Y.: Improving penalized regression-based clustering model in big data. Journal of Physics: Conference Series 1897, 2021, 012036. DOI: https://doi.org/10.1088/1742-6596/1897/1/012036
[2] Al Kababchee S. G., Algamal Z. Y., Qasim O. S.: Improving Penalized-Based Clustering Model in Big Fusion Data by Hybrid Black Hole Algorithm. Fusion: Practice & Applications 11(1), 2023, 70–76. DOI: https://doi.org/10.54216/FPA.110105
[3] Alqhtani S. M., et al.: Improved Brain Tumor Segmentation and Classification in Brain MRI with FCM-SVM: A Diagnostic Approach. IEEE Access 12, 2024, 61312–61335. DOI: https://doi.org/10.1109/ACCESS.2024.3394541
[4] Ashari I. F., et al.: Analysis of elbow, silhouette, Davies-Bouldin, Calinski-Harabasz, and rand-index evaluation on k-means algorithm for classifying flood-affected areas in Jakarta. Journal of Applied Informatics and Computing 7(1), 2023, 95–103. DOI: https://doi.org/10.30871/jaic.v7i1.4947
[5] Cebeci Z., Yildiz F.: Comparison of k-means and fuzzy c-means algorithms on different cluster structures. Journal of Agricultural Informatics 6(3), 2015, 13–23. DOI: https://doi.org/10.17700/jai.2015.6.3.196
[6] Cui A., et al.: Global and regional prevalence of vitamin D deficiency in population-based studies from 2000 to 2022: A pooled analysis of 7.9 million participants. Frontiers in Nutrition 10, 2023, 1070808. DOI: https://doi.org/10.3389/fnut.2023.1070808
[7] El Touati Y., Slimane J. B., Saidani T.: Adaptive Method for Feature Selection in the Machine Learning Context. Engineering, Technology & Applied Science Research 14(3), 2024, 14295–14300. DOI: https://doi.org/10.48084/etasr.7401
[8] Géron A.: Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. O'Reilly Media, Inc. 2022.
[9] Haeri Boroujeni S. P., Pashaei E.: A hybrid chimp optimization algorithm and generalized normal distribution algorithm with opposition-based learning strategy for solving data clustering problems. Iran Journal of Computer Science 7(1), 2024, 65–101. DOI: https://doi.org/10.1007/s42044-023-00160-x
[10] Hasan F. M., et al.: Enhanced Unsupervised Feature Selection Method Using Crow Search Algorithm and Calinski-Harabasz. International Journal of Computational Methods and Experimental Measurements 12(2), 2024, 185–190. DOI: https://doi.org/10.18280/ijcmem.120208
[11] Hassani M., Seidl T.: Using internal evaluation measures to validate the quality of diverse stream clustering algorithms. Vietnam Journal of Computer Science 4, 2017, 171–183. DOI: https://doi.org/10.1007/s40595-016-0086-9
[12] Hussain I., Sinaga K. P., Yang M.-S.: Unsupervised multiview fuzzy c-means clustering algorithm. Electronics 12(21), 2023, 4467. DOI: https://doi.org/10.3390/electronics12214467
[13] Islam U. J., et al.: Dynamic exploration–exploitation trade-off in active learning regression with Bayesian hierarchical modeling. IISE Transactions 2024, 1–15. DOI: https://doi.org/10.1080/24725854.2024.2332910
[14] Ji B., et al.: A survey of computational intelligence for 6G: Key technologies, applications and trends. IEEE Transactions on Industrial Informatics 17(10), 2021, 7145–7154. DOI: https://doi.org/10.1109/TII.2021.3052531
[15] Krasnov D., et al.: Fuzzy c-means clustering: A review of applications in breast cancer detection. Entropy 25(7), 2023, 1021. DOI: https://doi.org/10.3390/e25071021
[16] Munusamy S., Murugesan P.: Modified dynamic fuzzy c-means clustering algorithm–Application in dynamic customer segmentation. Applied Intelligence 50(6), 2020, 1922–1942. DOI: https://doi.org/10.1007/s10489-019-01626-x
[17] Possolo A.: Evaluating, Expressing, and Propagating Measurement Uncertainty for NIST Reference Materials. NIST Special Publication 260, 2020, 202. DOI: https://doi.org/10.6028/NIST.SP.260-202
[18] Rahman M. M., et al.: A review of machine learning methods of feature selection and classification for autism spectrum disorder. Brain sciences 10(12), 2020, 949. DOI: https://doi.org/10.3390/brainsci10120949
[19] Raja V., et al.: Alleviation of cadmium-induced oxidative damage through application of zinc oxide nanoparticles and strigolactones in Solanum lycopersicum L. Environmental Science: Nano 11, 2024, 2633–2654. DOI: https://doi.org/10.1039/D3EN00796K
[20] Song X., et al.: Evolutionary computation for feature selection in classification: A comprehensive survey of solutions, applications and challenges. Swarm and Evolutionary Computation 90, 2024, 101661. DOI: https://doi.org/10.1016/j.swevo.2024.101661
[21] Tayyebi J., Hosseinzadeh E.: A fuzzy c-means algorithm for clustering fuzzy data and its application in clustering incomplete data. Journal of AI and Data Mining 8(4), 2020, 515–523.
[22] Tokat S., et al.: Fuzzy c-means clustering-based key performance indicator design for warehouse loading operations. Journal of King Saud University-Computer and Information Sciences 34(8), 2022, 6377–6384. DOI: https://doi.org/10.1016/j.jksuci.2021.08.003
[23] Wang X., Xu Y.: An improved index for clustering validation based on Silhouette index and Calinski-Harabasz index. IOP Conf. Ser.: Mater. Sci. Eng. 569(5), 2019, 052024. DOI: https://doi.org/10.1088/1757-899X/569/5/052024
[24] Yang K., et al.: Classification and evaluation of driving behavior safety levels: A driving simulation study. IEEE Open Journal of Intelligent Transportation Systems 3, 2022, 111–125. DOI: https://doi.org/10.1109/OJITS.2022.3149474
[25] Zhan M.-F., et al.: Recent advances in statistical methodologies in evaluating program for high-dimensional data. Applied Mathematics-A Journal of Chinese Universities 37(1), 2022, 131–146. DOI: https://doi.org/10.1007/s11766-022-4489-3
[26] Zhang Y.: An improved generalized normal distribution optimization and its applications in numerical problems and engineering design problems. Artificial Intelligence Review 56(1), 2023, 685–747. DOI: https://doi.org/10.1007/s10462-022-10182-9
[27] Zhang Y., Jin Z., Mirjalili S.: Generalized normal distribution optimization and its applications in parameter extraction of photovoltaic models. Energy Conversion and Management 224, 2020, 113301. DOI: https://doi.org/10.1016/j.enconman.2020.113301
[28] Zhao W., et al.: Comparison and application of SOFM, fuzzy c-means and k-means clustering algorithms for natural soil environment regionalization in China. Environmental Research 216, 2023, 114519. DOI: https://doi.org/10.1016/j.envres.2022.114519
Article Details
Abstract views: 143

