Deep learning-based prediction of structural parameters in FDTD-simulated plasmonic nanostructures
Article Sidebar
Open full text
Issue Vol. 15 No. 4 (2025)
-
Control of the magnetic levitation using a PID controller with adaptation based on linear interpolation logic and genetic algorithm
Dominik Fila, Andrzej Neumann, Bartosz Olesik, Jakub Pawelec, Kamil Przybylak, Mateusz Ungier, Dawid Wajnert5-9
-
Development of a system for predicting failures of bagging machines
Nataliia Huliieva, Nataliia Lishchyna, Viktoriya Pasternak, Zemfira Huliieva10-13
-
Development and verification of a modular object-oriented fuzzy logic controller architecture for customizable and embedded applications
Rahim Mammadzada14-24
-
Mechanical fracture energy and structural-mechanical properties of meat snacks with beekeeping additives
Artem Antoniv, Igor Palamarchuk, Leonora Adamchuk, Marija Zheplinska25-31
-
Modelling of dynamic processes in a nonholonomic system in the form of Gibbs-Appell equations on the example of a ball mill
Volodymyr Shatokhin, Yaroslav Ivanchuk, Vitaly Liman, Sergii Komar, Oleksii Kozlovskyi32-38
-
Real-time Covid-19 diagnosis on embedded IoT platforms
Elmehdi Benmalek, Wajih Rhalem, Atman Jbari, Abdelilah Jilbab, Jamal Elmhamdi39-45
-
Hybrid models for handwriting-based diagnosis of Parkinson's disease
Asma Ouabd, Achraf Benba, Abdelilah Jilbab, Ahmed Hammouch46-50
-
Computer system for diagnostic and treatment of unilateral neglect syndrome
Krzysztof Strzecha, Agata Bukalska-Strzecha, Krzysztof Kurzdym, Dominik Sankowski51-55
-
Informatics and measurement in healthcare: deep learning for diabetic patient readmission prediction
Shiva Saffari, Mahdi Bahaghighat56-64
-
Optimization of non-invasive glucose monitoring accuracy using an optical sensor
Nurzhigit Smailov, Aliya Zilgarayeva, Sergii Pavlov, Balzhan Turusbekova, Akezhan Sabibolda65-70
-
Stochastic multi-objective minimax optimization of combined electromagnetic shield based on three-dimensional modeling of overhead power lines magnetic field
Borys Kuznetsov, Tatyana Nikitina, Alexander Kutsenko, Ihor Bovdui, Kostiantyn Czunikhin, Olena Voloshko, Roman Voliansky, Viktoriia Ivannikova71-75
-
Advanced energy management strategies for AC/DC microgrids
Zouhir Boumous, Samira Boumous, Tawfik Thelaidjia76-82
-
Experimental study of a multi-stage converter circuit
Kyrmyzy Taissariyeva, Kuanysh Muslimov, Yerlan Tashtay, Gulim Jobalayeva, Lyazzat Ilipbayeva, Ingkar Issakozhayeva, Akezhan Sabibolda83-86
-
Deep learning-based prediction of structural parameters in FDTD-simulated plasmonic nanostructures
Shahed Jahidul Haque, Arman Mohammad Nakib87-94
-
Development of an algorithm for calculating ion exchange processes using the Python ecosystem
Iryna Chub, Oleksii Proskurnia, Kateryna Demchenko, Oleksandr Miroshnyk, Taras Shchur, Serhii Halko95-99
-
Intelligent model for reliability control and safety in urban transport systems
Anastasiia Kashkanova, Alexander Rotshtein, Andrii Kashkanov, Denis Katelnikov100-107
-
Analysis of the interaction of components of a modular parcel storage system using UML diagrams
Lyudmila Samchuk, Yuliia Povstiana, Anastasia Hryshchuk108-116
-
Evaluating modified pairing insertion heuristics for efficient dial-a-ride problem solutions in healthcare logistics
Rodolfo Eleazar Pérez Loaiza, Aaron Guerrero-Campanur, Edmundo Bonilla Huerta117-123
-
Analysis of modern tools, methods of audit and monitoring of database security
Kateryna Mykhailyshyn, Oleh Harasymchuk, Oleh Deineka, Yurii Dreis, Volodymyr Shulha, Yuriy Pepa124-129
-
Improving underwater visuals by fusion of Deep-Retinex and GAN for enhanced image quality in subaquatic environments
Anuradha Chinta, Bharath Kumar Surla, Chaitanya Kodali130-136
-
The mathematical method for assessing the cybersecurity state of cloud services
Yevheniia Ivanchenko, Volodymyr Shulha, Ihor Ivanchenko, Yevhenii Pedchenko, Mari Petrovska137-141
-
Evaluation of the performance of LLMs deployments in selected cloud-based container services
Mateusz Stęgierski, Piotr Szpak, Sławomir Przyłucki142-150
-
Implementing traits in C# using Roslyn Source Generators
Mykhailo Pozur, Viktoria Voitko, Svitlana Bevz, Serhii Burbelo, Olena Kosaruk151-157
-
Impact of customizable orchestrator scheduling on machine learning efficiency in edge environments
Konrad Cłapa, Krzysztof Grudzień, Artur Sierszeń158-163
-
Reconfigured CoARX architecture for implementing ARX hashing in microcontrollers of IoT systems with limited resources
Serhii Zabolotnii, Inna Rozlomii, Andrii Yarmilko, Serhii Naumenko164-169
-
Integral assessment of the spring water quality with the use of fuzzy logic toolkit
Vyacheslav Repeta, Oleksandra Krykhovets, Yurii Kukura170-176
-
Selected issues concerning fibre-optic bending sensors
Les Hotra, Jacek Klimek, Ihor Helzhynskyy, Oksana Boyko, Svitlana Kovtun177-181
Archives
-
Vol. 15 No. 4
2025-12-20 27
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
Main Article Content
DOI
Authors
Abstract
The research creates a new approach to estimate essential dimensions of plasmonic nanoparticles that use the Finite-Difference Time-Domain (FDTD) simulation program. The research team uses EfficientNetB0 alongside ResNet50 and VGG16 deep learning models to obtain quick and exact simulations parameter predictions from simulation image data. The developed dataset consists of dielectric and magnetic field images that stem from FDTD simulated fields through representative materials MgF₂, Au, and glass. The preparation process for the dataset includes a systematic variation of 38 structural parameters for achieving sufficient coverage of potential configurations. VGG16 proved to be the most effective model from the testing group because it attained a training loss 0.1592, validation loss of 0.1607, and test loss 0.1625. The outstanding result shows deep learning techniques can be effectively used to boost nanophotonic device design speeds and optimization processes. The methodology developed in this work has the potential to reduce substantially the computational expenses together with simulation duration for nanostructure engineering processes.
Keywords:
References
[1] Adibnia E. et al.: A deep learning method for empirical spectral prediction and inverse design of all-optical nonlinear plasmonic ring resonator switches. Scientific Reports 14(1), 2024, 5787.
[2] Adibnia E., Ghadrdan M., Mansouri-Birjandi M. A.: Nanophotonic structure inverse design for switching application using deep learning. Scientific Reports 14(1), 2024, 21094.
[3] Baxter J. et al.: Plasmonic colours predicted by deep learning. Scientific reports 9(1), 2019, 8074.
[4] Du Q., Zhang Q., Liu G.: Deep learning: an efficient method for plasmonic design of geometric nanoparticles. Nanotechnology 32(50), 2021, 505607.
[5] He J. et al.: Plasmonic nanoparticle simulations and inverse design using machine learning. Nanoscale 11(37), 2019, 17444–17459.
[6] Jahan T. et al.: Deep learning-driven forward and inverse design of nanophotonic nanohole arrays: streamlining design for tailored optical functionalities and enhancing accessibility. Nanoscale 16(35), 2024, 16641–16651.
[7] Kazemzadeh M.: Deep Learning and Optimised Nanoplasmonic Sensors for Label-free Biomedical Applications (Doctoral dissertation, ResearchSpace@ Auckland). 2022.
[8] Li Y. et al.: Predicting scattering from complex nano-structures via deep learning. IEEE Access 8, 2020, 139983–139993.
[9] Mahadi M. K. et al.: Gated recurrent unit (GRU)-based deep learning method for spectrum estimation and inverse modeling in plasmonic devices. Applied Physics A 130(11), 2024, 784.
[10] Malkiel I. et al.: Plasmonic nanostructure design and characterization via deep learning. Light: Science & Applications 7(1), 2018, 60.
[11] Manzhos S. et al.: Modeling of plasmonic properties of nanostructures for next generation solar cells and beyond. Advances in Physics: X 6(1), 2021, 1908848.
[12] Masson J. F., Biggins J.S., Ringe E.: Machine learning for nanoplasmonics. Nature Nanotechnology 18(2), 2023, 111–123.
[13] Nakib A. M. et al.: Advanced Simulation Datasets for Deep Learning-Based Photonic and Electromagnetic Research using FDTD Methods. International Journal of Engineering and Advanced Technology Studies 12(4), 2024, 1–16.
[14] Persson P.: Inverse Design of Anisotropic Nanostructures using modern Deep Learning methods (Master’s Thesis in Engineering Physics, Umeå University). 2024.
[15] Vahidzadeh E., Shankar K.: Insights into the Machine Learning Predictions of the Optical Response of Plasmon@ Semiconductor Core-Shell Nanocylinders. Photochem 3(1), 2023, 155–170.
[16] Verma S.: Evaluation of Photonic Characteristics of Plasmonic Integrated Metallic Nanoparticles with the help of Artificial Neural Network Parameterisation (Doctoral dissertation, University of London). 2023.
[17] Xu X., Aggarwal D., Shankar K.: Instantaneous property prediction and inverse design of plasmonic nanostructures using machine learning: current applications and future directions. Nanomaterials 12(4), 2022, 633.
[18] Zhang T. et al.: Machine learning and evolutionary algorithm studies of graphene metamaterials for optimized plasmon-induced transparency. Optics Express 28(13), 2020, 18899–18916.
Article Details
Abstract views: 1

