Intelligent model for reliability control and safety in urban transport systems
Article Sidebar
Open full text
Issue Vol. 15 No. 4 (2025)
-
Control of the magnetic levitation using a PID controller with adaptation based on linear interpolation logic and genetic algorithm
Dominik Fila, Andrzej Neumann, Bartosz Olesik, Jakub Pawelec, Kamil Przybylak, Mateusz Ungier, Dawid Wajnert5-9
-
Development of a system for predicting failures of bagging machines
Nataliia Huliieva, Nataliia Lishchyna, Viktoriya Pasternak, Zemfira Huliieva10-13
-
Development and verification of a modular object-oriented fuzzy logic controller architecture for customizable and embedded applications
Rahim Mammadzada14-24
-
Mechanical fracture energy and structural-mechanical properties of meat snacks with beekeeping additives
Artem Antoniv, Igor Palamarchuk, Leonora Adamchuk, Marija Zheplinska25-31
-
Modelling of dynamic processes in a nonholonomic system in the form of Gibbs-Appell equations on the example of a ball mill
Volodymyr Shatokhin, Yaroslav Ivanchuk, Vitaly Liman, Sergii Komar, Oleksii Kozlovskyi32-38
-
Real-time Covid-19 diagnosis on embedded IoT platforms
Elmehdi Benmalek, Wajih Rhalem, Atman Jbari, Abdelilah Jilbab, Jamal Elmhamdi39-45
-
Hybrid models for handwriting-based diagnosis of Parkinson's disease
Asma Ouabd, Achraf Benba, Abdelilah Jilbab, Ahmed Hammouch46-50
-
Computer system for diagnostic and treatment of unilateral neglect syndrome
Krzysztof Strzecha, Agata Bukalska-Strzecha, Krzysztof Kurzdym, Dominik Sankowski51-55
-
Informatics and measurement in healthcare: deep learning for diabetic patient readmission prediction
Shiva Saffari, Mahdi Bahaghighat56-64
-
Optimization of non-invasive glucose monitoring accuracy using an optical sensor
Nurzhigit Smailov, Aliya Zilgarayeva, Sergii Pavlov, Balzhan Turusbekova, Akezhan Sabibolda65-70
-
Stochastic multi-objective minimax optimization of combined electromagnetic shield based on three-dimensional modeling of overhead power lines magnetic field
Borys Kuznetsov, Tatyana Nikitina, Alexander Kutsenko, Ihor Bovdui, Kostiantyn Czunikhin, Olena Voloshko, Roman Voliansky, Viktoriia Ivannikova71-75
-
Advanced energy management strategies for AC/DC microgrids
Zouhir Boumous, Samira Boumous, Tawfik Thelaidjia76-82
-
Experimental study of a multi-stage converter circuit
Kyrmyzy Taissariyeva, Kuanysh Muslimov, Yerlan Tashtay, Gulim Jobalayeva, Lyazzat Ilipbayeva, Ingkar Issakozhayeva, Akezhan Sabibolda83-86
-
Deep learning-based prediction of structural parameters in FDTD-simulated plasmonic nanostructures
Shahed Jahidul Haque, Arman Mohammad Nakib87-94
-
Development of an algorithm for calculating ion exchange processes using the Python ecosystem
Iryna Chub, Oleksii Proskurnia, Kateryna Demchenko, Oleksandr Miroshnyk, Taras Shchur, Serhii Halko95-99
-
Intelligent model for reliability control and safety in urban transport systems
Anastasiia Kashkanova, Alexander Rotshtein, Andrii Kashkanov, Denis Katelnikov100-107
-
Analysis of the interaction of components of a modular parcel storage system using UML diagrams
Lyudmila Samchuk, Yuliia Povstiana, Anastasia Hryshchuk108-116
-
Evaluating modified pairing insertion heuristics for efficient dial-a-ride problem solutions in healthcare logistics
Rodolfo Eleazar Pérez Loaiza, Aaron Guerrero-Campanur, Edmundo Bonilla Huerta117-123
-
Analysis of modern tools, methods of audit and monitoring of database security
Kateryna Mykhailyshyn, Oleh Harasymchuk, Oleh Deineka, Yurii Dreis, Volodymyr Shulha, Yuriy Pepa124-129
-
Improving underwater visuals by fusion of Deep-Retinex and GAN for enhanced image quality in subaquatic environments
Anuradha Chinta, Bharath Kumar Surla, Chaitanya Kodali130-136
-
The mathematical method for assessing the cybersecurity state of cloud services
Yevheniia Ivanchenko, Volodymyr Shulha, Ihor Ivanchenko, Yevhenii Pedchenko, Mari Petrovska137-141
-
Evaluation of the performance of LLMs deployments in selected cloud-based container services
Mateusz Stęgierski, Piotr Szpak, Sławomir Przyłucki142-150
-
Implementing traits in C# using Roslyn Source Generators
Mykhailo Pozur, Viktoria Voitko, Svitlana Bevz, Serhii Burbelo, Olena Kosaruk151-157
-
Impact of customizable orchestrator scheduling on machine learning efficiency in edge environments
Konrad Cłapa, Krzysztof Grudzień, Artur Sierszeń158-163
-
Reconfigured CoARX architecture for implementing ARX hashing in microcontrollers of IoT systems with limited resources
Serhii Zabolotnii, Inna Rozlomii, Andrii Yarmilko, Serhii Naumenko164-169
-
Integral assessment of the spring water quality with the use of fuzzy logic toolkit
Vyacheslav Repeta, Oleksandra Krykhovets, Yurii Kukura170-176
-
Selected issues concerning fibre-optic bending sensors
Les Hotra, Jacek Klimek, Ihor Helzhynskyy, Oksana Boyko, Svitlana Kovtun177-181
Archives
-
Vol. 15 No. 4
2025-12-20 27
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
Main Article Content
DOI
Authors
Abstract
This paper proposes an intelligent model for controlling the reliability and safety of urban transport systems, integrating fuzzy cognitive maps (FCMs) with the Bellman-Zadeh decision-making principle. This approach enables the consideration of complex interactions between evaluation criteria and controllable variables, which are characteristic of modern urban environments. To harmonise the modelling outcomes, a membership function to the ideal solution is introduced, allowing for the aggregation of the criteria vector through the intersection of corresponding fuzzy sets. A generalised algorithm is developed for forecasting reliability and safety parameters under the influence of multiple factors, facilitating multi-criteria selection of alternatives in dynamic and uncertain conditions. Special attention is given to the model’s applicability in road safety audits, where both technical and behavioural risk factors must be considered. The proposed framework supports scenario analysis, enabling the simulation of various event developments, the assessment of their implications for transport safety, and the formulation of adaptive response strategies. The integration of FCMs with the Bellman-Zadeh principle formalises the evaluation of safety scenarios, ranks critical factors, and supports decision-making for the optimisation of transport infrastructure. The approach can be adapted to various types of transport systems and utilised to enhance risk management, environmental safety, and strategic planning in urban contexts.
Keywords:
References
[1] Aju Kumar V. N., Gandhi, M. S., & Gandhi, O. P.: Identification and assessment of factors influencing human reliability in maintenance using fuzzy cognitive maps. Quality and Reliability Engineering International, 31(2), 2015, 169–181. [https://doi.org/10.1002/qre.1569].
[2] Bellman R. E., Zadeh L. A.: Decision Making in Fuzzy Environment. Management Science 17(4), 1970, B141–B164 [https://doi.org/10.1287/mnsc.17.4.B141].
[3] Christodoulides C., Christodoulides G.: The Method of Least Squares. Analysis and Presentation of Experimental Results. Undergraduate Lecture Notes in Physics. Springer, Cham 2017 [https://doi.org/10.1007/978-3-319-53345-2_11].
[4] Gen M., Cheng R.: Genetic Algorithms and Engineering Design. Wiley Series in Engineering Design and Automation. John Wiley & Sons, Inc., New York, USA, 1997.
[5] Glushkov V. M.: On Systems Optimization. Laxenburg: International institute for applied systems analysis, 1981.
[6] Gu B., Liu J., Chen J.: Scenario-based strategies evaluation for the maritime supply chain resilience. Transportation Research Part D: Transport and Environment 124, 2023, 103948 [https://doi.org/10.3390/s22010271].
[7] Hasson F., Keeney S., McKenna H.: Revisiting the Delphi technique-research thinking and practice: a discussion paper. International Journal of Nursing Studies 168, 2025, 105119 [https://doi.org/10.1016/j.ijnurstu.2025.105119].
[8] İnce E. C.: Mapping the Path to Sustainable Urban Mobility: A Bibliometric Analysis of Global Trends and Innovations in Transportation Research. Sustainability 17(4), 2025, 1480 [https://doi.org/10.3390/su17041480].
[9] Kasabov N.: Foundations of neural networks, fuzzy systems, and knowledge engineering. MIT Press, London 1998.
[10] Kashkanov A. et al.: Estimation parameters of braking of vehicles category M1 at definition of circumstances road accidents. SAE Technical Paper 2022-01-1166, 2022 [https://doi.org/10.4271/2022-01-1166].
[11] Kashkanov A. et al.: Automotive lighting: Method of assessing the visibility of objects in the light of car headlights. Przegląd Elektrotechniczny 96(9), 2020, 90–94 [https://doi.org/10.15199/48.2020.09.19].
[12] Keshavarz E., Mahmoodirad A., Niroomand S.: A Transportation Problem Considering Fixed Charge and Fuzzy Shipping Costs. Decision Making Advances 1(1), 2023, 115–122 [https://doi.org/10.31181/dma11202313].
[13] Kosko B.: Fuzzy cognitive maps. International Journal of Man-Machine Studies. 24, 1986, 65-75.
[14] León M. et al.: Tackling Travel Behaviour: An approach based on Fuzzy Cognitive Maps. International Journal of Computational Intelligence Systems. 6(6), 2013, 1012-1039 [https://doi.org/10.1080/18756891.2013.816025].
[15] Madala K., Solmaz M.: Scenario-Based Risk Quantification Approach for Assuring Safety in Autonomous Vehicles. SAE Technical Paper 2023-01-0584. 2023 [https://doi.org/10.4271/2023-01-0584].
[16] Morris A. S., Langari R.: Measurement and Instrumentation: Theory and Application. Academic Press, 2021. [https://doi.org/10.1016/C2018-0-01451-6].
[17] Poonia H., Sharma A.: Multi-objective fuzzy linear programming techniques: A critical review. International Journal of Statistics and Applied Mathematics. 8(5), 2023, 224-229.
[18] Rezaei J.: Best-worst multi-criteria decision-making method. Omega, 53, 2015, 49–57. [https://doi.org/10.1016/j.omega.2014.11.009].
[19] Rotshtein A., Katielnikov D., Kashkanov A.: A fuzzy cognitive approach to ranking of factors affecting the reliability of man-machine systems. Cybernetics and Systems Analysis 55(6), 2019, 958–966 [https://doi.org/10.1007/s10559-019-00206-8].
[20] Saaty T. L.: The Analytic Hierarchy Process. McGraw-Hill, New York 1980.
[21] Safarpour H. et al.: Vision Zero: Evolution History and Developing Trend in Road Safety: A Scoping Review. Trauma Monthly 25(6), 2020, 275–286 [https://doi.org/10.30491/tm.2020.244740.1166].
[22] Vinnakota T.: A conceptual framework for complex system design and design management. Annual IEEE Systems Conference (SysCon). 2016, 16 [https://doi.org/10.1109/SYSCON.2016.7490575].
[23] Yager R.: Multiple objective decision-making using fuzzy sets. International Journal of Man-Machine Studies 9(4), 1977, 375–382 [https://doi.org/10.1016/S0020-7373(77)80008-4].
[24] Zadeh L.: Fuzzy sets. Information and Control 8(3), 1965, 338–353 [https://doi.org/10.1016/S0019-9958(65)90241-X].
[25] Zhao L., Wang Q., Hwang B.-G.: How to Promote Urban Intelligent Transportation: A Fuzzy Cognitive Map Study. Frontiers in Neuroscience 16, 2022, 919914 [https://doi.org/10.3389/fnins.2022.919914].
Article Details
Abstract views: 1

