Development of a system for predicting failures of bagging machines
Article Sidebar
Open full text
Issue Vol. 15 No. 4 (2025)
-
Control of the magnetic levitation using a PID controller with adaptation based on linear interpolation logic and genetic algorithm
Dominik Fila, Andrzej Neumann, Bartosz Olesik, Jakub Pawelec, Kamil Przybylak, Mateusz Ungier, Dawid Wajnert5-9
-
Development of a system for predicting failures of bagging machines
Nataliia Huliieva, Nataliia Lishchyna, Viktoriya Pasternak, Zemfira Huliieva10-13
-
Development and verification of a modular object-oriented fuzzy logic controller architecture for customizable and embedded applications
Rahim Mammadzada14-24
-
Mechanical fracture energy and structural-mechanical properties of meat snacks with beekeeping additives
Artem Antoniv, Igor Palamarchuk, Leonora Adamchuk, Marija Zheplinska25-31
-
Modelling of dynamic processes in a nonholonomic system in the form of Gibbs-Appell equations on the example of a ball mill
Volodymyr Shatokhin, Yaroslav Ivanchuk, Vitaly Liman, Sergii Komar, Oleksii Kozlovskyi32-38
-
Real-time Covid-19 diagnosis on embedded IoT platforms
Elmehdi Benmalek, Wajih Rhalem, Atman Jbari, Abdelilah Jilbab, Jamal Elmhamdi39-45
-
Hybrid models for handwriting-based diagnosis of Parkinson's disease
Asma Ouabd, Achraf Benba, Abdelilah Jilbab, Ahmed Hammouch46-50
-
Computer system for diagnostic and treatment of unilateral neglect syndrome
Krzysztof Strzecha, Agata Bukalska-Strzecha, Krzysztof Kurzdym, Dominik Sankowski51-55
-
Informatics and measurement in healthcare: deep learning for diabetic patient readmission prediction
Shiva Saffari, Mahdi Bahaghighat56-64
-
Optimization of non-invasive glucose monitoring accuracy using an optical sensor
Nurzhigit Smailov, Aliya Zilgarayeva, Sergii Pavlov, Balzhan Turusbekova, Akezhan Sabibolda65-70
-
Stochastic multi-objective minimax optimization of combined electromagnetic shield based on three-dimensional modeling of overhead power lines magnetic field
Borys Kuznetsov, Tatyana Nikitina, Alexander Kutsenko, Ihor Bovdui, Kostiantyn Czunikhin, Olena Voloshko, Roman Voliansky, Viktoriia Ivannikova71-75
-
Advanced energy management strategies for AC/DC microgrids
Zouhir Boumous, Samira Boumous, Tawfik Thelaidjia76-82
-
Experimental study of a multi-stage converter circuit
Kyrmyzy Taissariyeva, Kuanysh Muslimov, Yerlan Tashtay, Gulim Jobalayeva, Lyazzat Ilipbayeva, Ingkar Issakozhayeva, Akezhan Sabibolda83-86
-
Deep learning-based prediction of structural parameters in FDTD-simulated plasmonic nanostructures
Shahed Jahidul Haque, Arman Mohammad Nakib87-94
-
Development of an algorithm for calculating ion exchange processes using the Python ecosystem
Iryna Chub, Oleksii Proskurnia, Kateryna Demchenko, Oleksandr Miroshnyk, Taras Shchur, Serhii Halko95-99
-
Intelligent model for reliability control and safety in urban transport systems
Anastasiia Kashkanova, Alexander Rotshtein, Andrii Kashkanov, Denis Katelnikov100-107
-
Analysis of the interaction of components of a modular parcel storage system using UML diagrams
Lyudmila Samchuk, Yuliia Povstiana, Anastasia Hryshchuk108-116
-
Evaluating modified pairing insertion heuristics for efficient dial-a-ride problem solutions in healthcare logistics
Rodolfo Eleazar Pérez Loaiza, Aaron Guerrero-Campanur, Edmundo Bonilla Huerta117-123
-
Analysis of modern tools, methods of audit and monitoring of database security
Kateryna Mykhailyshyn, Oleh Harasymchuk, Oleh Deineka, Yurii Dreis, Volodymyr Shulha, Yuriy Pepa124-129
-
Improving underwater visuals by fusion of Deep-Retinex and GAN for enhanced image quality in subaquatic environments
Anuradha Chinta, Bharath Kumar Surla, Chaitanya Kodali130-136
-
The mathematical method for assessing the cybersecurity state of cloud services
Yevheniia Ivanchenko, Volodymyr Shulha, Ihor Ivanchenko, Yevhenii Pedchenko, Mari Petrovska137-141
-
Evaluation of the performance of LLMs deployments in selected cloud-based container services
Mateusz Stęgierski, Piotr Szpak, Sławomir Przyłucki142-150
-
Implementing traits in C# using Roslyn Source Generators
Mykhailo Pozur, Viktoria Voitko, Svitlana Bevz, Serhii Burbelo, Olena Kosaruk151-157
-
Impact of customizable orchestrator scheduling on machine learning efficiency in edge environments
Konrad Cłapa, Krzysztof Grudzień, Artur Sierszeń158-163
-
Reconfigured CoARX architecture for implementing ARX hashing in microcontrollers of IoT systems with limited resources
Serhii Zabolotnii, Inna Rozlomii, Andrii Yarmilko, Serhii Naumenko164-169
-
Integral assessment of the spring water quality with the use of fuzzy logic toolkit
Vyacheslav Repeta, Oleksandra Krykhovets, Yurii Kukura170-176
-
Selected issues concerning fibre-optic bending sensors
Les Hotra, Jacek Klimek, Ihor Helzhynskyy, Oksana Boyko, Svitlana Kovtun177-181
Archives
-
Vol. 15 No. 4
2025-12-20 27
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
Main Article Content
DOI
Authors
Pasternak.Viktoriia@vnu.edu.ua
Abstract
The reliability and effective operation of machines is a pressing problem for every enterprise, which requires labour intensive systematizationof production processes. The goal is to develop an algorithm and a system for predicting failures of packaging machines based on the analysisof operational indicators. The scientific novelty lies in the integration of statistical data to assess the efficiency of machine operation and predict possible failures, which allows significantly improving maintenance processes and reducing the risks of unforeseen breakdowns. The practical valueis the development of a forecasting system that collects the necessary statistical data and performs forecasting. Based on the collected data, an assessment of the efficiency of work and forecasting of possible failures is carried out. The forecasting system is demonstrated on the example of packaging machines LEMO INTERmat ST-SA 850 of "Tatrafan" LLC. Two research methods were used: calculation (mathematical) and forecasting system (least squares method). The forecasting system provides two ways of presenting data: tabular and graphical. Tabular presentation of data allows filtering information according to various criteria, while graphical display is implemented in the form of diagrams showing the operating time and downtime of machines.The main results are the determined range of probable failure of LEMO INTERmat ST-SA 850 packaging machines, which lies in the range from 9090.5to 12736.5 hours of operation and almost coincides with the manufacturer's warranty period. With timely maintenance, it is possible to increase the lower limit of this interval.
Keywords:
References
[1] Anozie U. C. et al.: Integration of IoT technology in lean manufacturingfor real-time supply chain optimization. International Journalof Science and Research Archive 12(2), 2024, 1948–1957 [https://doi.org/10.30574/ijsra.2024.12.2.1498].
[2] Azevedo B. F., Rocha A. M. A. C., Pereira A. I.: Hybrid approachesto optimization and machine learning methods: a systematicliterature review. Mach Learn 113, 2024, 4055–4097 [https://doi.org/10.1007/s10994-023-06467-x].
[3] Derogar S. et al.: Prediction of punching shear strength of slab-column connections: a comprehensive evaluation of machine learning and deep learning based approaches Mech. Adv. Mater. Struct. 31(6), 2024, 1272–1290 [https://doi.org/ 10.1080/15376494.2022.2134950].
[4] Falkenberg S. F., Spinler S.: The role of novel data in maintenanceplanning: Breakdown predictions for material handlingequipment. Computers & Industrial Engineering 169, 2022, 108230 [https://doi.org/10.1016/j.cie.2022.108230].
[5] Fan L. et al.: Reliability analysis of computed tomography equipmentusing the q-Weibull distribution. Engineering Reports 5(7), 2023, e12613 [https://doi.org/10.1002/eng2.12613].
[6] Gajewski J., Vališ D.: Verification of the technical equipment degradation method using a hybrid reinforcement learning trees–artificialneural network system. Tribology International 153, 2021, 106618 [https://doi.org/10.1016/j.triboint.2020.106618].
[7] Нuliieva N. M., Pasternak V. V.: Isothermal mechanical Cycling of Saponite–Titanium Composites in Conditions of Complex Stressed State.Latvian Journal of Physics and Technical Sciences 59(6), 2022, 12–21 [https://doi.org/10.2478/lpts-2022-0043].
[8] Kang R., Gong W., Chen Yu.: Model-driven degradation modeling approaches: Investigation and review. Chinese Journal of Aeronautics 33(4), 2020,1137–1153 [https://doi.org/10.1016/j.cja.2019.12.006].
[9] Lieposhkina N. et al.: Statistical Methods for Decision-Making Regarding Technological Systems. Intelligent Systems in Production Engineeringand Maintenance III, 2023, 293–305 [https://doi.org/10.1007/978-3-031-44282-7_23].
[10] Omar E. D. et al.: Comparative Analysis of Logistic Regression, Gradient Boosted Trees, SVM, and Random Forest Algorithms for Prediction of Acute Kidney Injury Requiring Dialysis After Cardiac Surgery. International Journal of Nephrology and Renovascular Disease 17, 2024, 197–204 [https://doi.org/10.2147/IJNRD.S461028].
[11] Prydalnyi B.: Creation of automatic clamping mechanisms for spindle assemblies of machine tools using a formalized description of structural elements. Eastern-European Journal of Enterprise Technologies 5(1(119)), 2022, 26–35 [https://doi.org/10.15587/1729-4061.2022.265191].
[12] Prydalnyi B., Kuznetsov Y., Lyshuk V.: Methodology and Tools for Computer-Aided Calculation of Characteristics of Electromechanical Clamping Drive Actuated by Induction Motor. ICIE 2021. Springer, Cham 2021, 256–266 [https://doi.org/10.1007/978-3-030-54817-9_30].
[13] Ruban A., Pasternak V., Huliіeva N.: Prediction of the Structural Propertiesof Powder Materials by 3D Modeling Methods. Materials Science Forum 1068, 2022, 231–238 [https://doi.org/10.4028/p-18k386].
[14] Shi H. et al.: Robust Total Least Squares Estimation Methodfor Uncertain Linear Regression Model. Mathematics 11(20), 2023, 4354 [https://doi.org/10.3390/math11204354].
[15] Soori M., Arezoo B., Dastres R.: Artificial intelligence, machine learningand deep learning in advanced robotics, a review. Cognitive Robotics 3, 2023, 54–70 [https://doi.org/10.1016/j.cogr.2023.04.001].
[16] Tatrafan. Flexible [https://tatrafan.ua/Tehnologi/#acttech5] (available: 09.01.2025).
[17] Vago N. O. P., Forbicini F., Fraternali P.: Predicting Machine Failuresfrom Multivariate Time Series: An Industrial Case Study. Machines 12(6), 2024, 357 [https://doi.org/10.3390/machines12060357].
[18] Vasiliauskaite V., Antulov-Fantulin N.: Generalization of neural network models for complex network dynamics. Commun Phys 7, 2024, 348 [https://doi.org/10.1038/s42005-024-01837-w].
[19] Yadav D. K., Kaushik A., Yadav N.: Predicting machine failures using machine learning and deep learning algorithms. Sustainable Manufacturing and Service Economics 3, 2024, 100029 [https://doi.org/10.1016/j.smse.2024.100029].
Article Details
Abstract views: 1

