Impact of customizable orchestrator scheduling on machine learning efficiency in edge environments
Article Sidebar
Open full text
Issue Vol. 15 No. 4 (2025)
-
Control of the magnetic levitation using a PID controller with adaptation based on linear interpolation logic and genetic algorithm
Dominik Fila, Andrzej Neumann, Bartosz Olesik, Jakub Pawelec, Kamil Przybylak, Mateusz Ungier, Dawid Wajnert5-9
-
Development of a system for predicting failures of bagging machines
Nataliia Huliieva, Nataliia Lishchyna, Viktoriya Pasternak, Zemfira Huliieva10-13
-
Development and verification of a modular object-oriented fuzzy logic controller architecture for customizable and embedded applications
Rahim Mammadzada14-24
-
Mechanical fracture energy and structural-mechanical properties of meat snacks with beekeeping additives
Artem Antoniv, Igor Palamarchuk, Leonora Adamchuk, Marija Zheplinska25-31
-
Modelling of dynamic processes in a nonholonomic system in the form of Gibbs-Appell equations on the example of a ball mill
Volodymyr Shatokhin, Yaroslav Ivanchuk, Vitaly Liman, Sergii Komar, Oleksii Kozlovskyi32-38
-
Real-time Covid-19 diagnosis on embedded IoT platforms
Elmehdi Benmalek, Wajih Rhalem, Atman Jbari, Abdelilah Jilbab, Jamal Elmhamdi39-45
-
Hybrid models for handwriting-based diagnosis of Parkinson's disease
Asma Ouabd, Achraf Benba, Abdelilah Jilbab, Ahmed Hammouch46-50
-
Computer system for diagnostic and treatment of unilateral neglect syndrome
Krzysztof Strzecha, Agata Bukalska-Strzecha, Krzysztof Kurzdym, Dominik Sankowski51-55
-
Informatics and measurement in healthcare: deep learning for diabetic patient readmission prediction
Shiva Saffari, Mahdi Bahaghighat56-64
-
Optimization of non-invasive glucose monitoring accuracy using an optical sensor
Nurzhigit Smailov, Aliya Zilgarayeva, Sergii Pavlov, Balzhan Turusbekova, Akezhan Sabibolda65-70
-
Stochastic multi-objective minimax optimization of combined electromagnetic shield based on three-dimensional modeling of overhead power lines magnetic field
Borys Kuznetsov, Tatyana Nikitina, Alexander Kutsenko, Ihor Bovdui, Kostiantyn Czunikhin, Olena Voloshko, Roman Voliansky, Viktoriia Ivannikova71-75
-
Advanced energy management strategies for AC/DC microgrids
Zouhir Boumous, Samira Boumous, Tawfik Thelaidjia76-82
-
Experimental study of a multi-stage converter circuit
Kyrmyzy Taissariyeva, Kuanysh Muslimov, Yerlan Tashtay, Gulim Jobalayeva, Lyazzat Ilipbayeva, Ingkar Issakozhayeva, Akezhan Sabibolda83-86
-
Deep learning-based prediction of structural parameters in FDTD-simulated plasmonic nanostructures
Shahed Jahidul Haque, Arman Mohammad Nakib87-94
-
Development of an algorithm for calculating ion exchange processes using the Python ecosystem
Iryna Chub, Oleksii Proskurnia, Kateryna Demchenko, Oleksandr Miroshnyk, Taras Shchur, Serhii Halko95-99
-
Intelligent model for reliability control and safety in urban transport systems
Anastasiia Kashkanova, Alexander Rotshtein, Andrii Kashkanov, Denis Katelnikov100-107
-
Analysis of the interaction of components of a modular parcel storage system using UML diagrams
Lyudmila Samchuk, Yuliia Povstiana, Anastasia Hryshchuk108-116
-
Evaluating modified pairing insertion heuristics for efficient dial-a-ride problem solutions in healthcare logistics
Rodolfo Eleazar Pérez Loaiza, Aaron Guerrero-Campanur, Edmundo Bonilla Huerta117-123
-
Analysis of modern tools, methods of audit and monitoring of database security
Kateryna Mykhailyshyn, Oleh Harasymchuk, Oleh Deineka, Yurii Dreis, Volodymyr Shulha, Yuriy Pepa124-129
-
Improving underwater visuals by fusion of Deep-Retinex and GAN for enhanced image quality in subaquatic environments
Anuradha Chinta, Bharath Kumar Surla, Chaitanya Kodali130-136
-
The mathematical method for assessing the cybersecurity state of cloud services
Yevheniia Ivanchenko, Volodymyr Shulha, Ihor Ivanchenko, Yevhenii Pedchenko, Mari Petrovska137-141
-
Evaluation of the performance of LLMs deployments in selected cloud-based container services
Mateusz Stęgierski, Piotr Szpak, Sławomir Przyłucki142-150
-
Implementing traits in C# using Roslyn Source Generators
Mykhailo Pozur, Viktoria Voitko, Svitlana Bevz, Serhii Burbelo, Olena Kosaruk151-157
-
Impact of customizable orchestrator scheduling on machine learning efficiency in edge environments
Konrad Cłapa, Krzysztof Grudzień, Artur Sierszeń158-163
-
Reconfigured CoARX architecture for implementing ARX hashing in microcontrollers of IoT systems with limited resources
Serhii Zabolotnii, Inna Rozlomii, Andrii Yarmilko, Serhii Naumenko164-169
-
Integral assessment of the spring water quality with the use of fuzzy logic toolkit
Vyacheslav Repeta, Oleksandra Krykhovets, Yurii Kukura170-176
-
Selected issues concerning fibre-optic bending sensors
Les Hotra, Jacek Klimek, Ihor Helzhynskyy, Oksana Boyko, Svitlana Kovtun177-181
Archives
-
Vol. 15 No. 4
2025-12-20 27
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
Main Article Content
DOI
Authors
Abstract
This article explores the impact of custom scheduling strategies on the performance of machine learning workflows at the edge by using the case of Kubernetes scheduling. Optimizing machine learning (ML) workloads on resource-constrained edge devices has become a significant scientific challenge addressed by multiple studies. The severe limitations of edge systems in processing power, memory, and energy render conventional cloud-native schedulers ineffective, leading to poor resource utilization and degraded performance. While numerous advanced, data-driven solutions have been proposed for large-scale systems, their complexity and overhead are often impractical for edge deployments. In contrast, this work investigates a simpler, lightweight scheduling mechanism for CPU-based workloads that provides efficient and predictable performance without relying on historical data, making it well-suited for the unique requirements of the edge.Using a lightweight K3s cluster integrated with Kubeflow Pipelines, we investigate how varying binpacking functions influence resource allocation and training efficiency of a CNN model on the MNIST dataset. Our experiments demonstrate that tailored scheduling configurations can lead to noticeable improvements in training times and hardware utilization across different edge cluster sizes. The results offer actionable insights for optimizing AI workloads in resource-constrained edge environments.
Keywords:
References
[1] Abadi M. et al.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI), 2016.
[2] Almusallam N., Alabdulatif A., Alarfaj F.: Analysis of Privacy-Preserving Edge Computing and Internet of Things Models in Healthcare Domain. Comput Math Methods Med. 2021, 6834800 [https://doi.org/10.1155/2021/6834800].
[3] Chen T. et al.: MXNet: A Flexible and Efficient Machine Learning Library for Heterogeneous Distributed Systems. arXiv preprint arXiv:1512.01274, 2015.
[4] Clapa K., Grudzien K., Sierszeń A.: Assessment of Performance for Cloud-Native Machine Learning on Edge Devices. Digital Interaction and Machine Intelligence. Springer, 2024, 95–105.
[5] Guo M. et al.: K8sSim: A Simulation Tool for Kubernetes Schedulers and Its Applications. Journal of Cloud Computing, SpringerOpen, 2023.
[6] Jian Z., Wu J., Yang X.: DRS: Deep Reinforcement Learning Enhanced Scheduler for Kubernetes, Software – Practice and Experience. Wiley, 2021.
[7] Kubernetes Documentation "Resource Bin Packing". Kubernetes.io, 2025 [https://kubernetes.io/docs/concepts/scheduling-eviction/resource-bin-packing/].
[8] Kubernetes Documentation, "Resource Management for Pods and Containers". Kubernetes.io, 2025 [https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/].
[9] LeCun Y. et al.: Gradient-Based Learning Applied to Document Recognition. Proceedings of the IEEE 86(11), 1998, 2278–2324.
[10] LeCun Y., Cortes C., Burges C. J. C.: The MNIST Database of Handwritten Digits [http://yann.lecun.com/exdb/mnist/].
[11] Liu P., Guitart J.: Fine-Grained Scheduling for Containerized HPC Workloads in Kubernetes Clusters. arXiv preprint arXiv:2211.11487, 2022.
[12] Lv Z. et al.: Intelligent edge computing based on machine learning for smart city. Future Generation Computer Systems 115, 2021, 90–99.
[13] Rausch T., Rashed A., Dustdar S.: Optimized container scheduling for data-intensive serverless edge computing. Future Generation Computer Systems 114, 2021, 259–271.
[14] Toka L. et al.: Machine Learning-Based Scaling Management for Kubernetes Edge Clusters. Transactions on Network and Service Management 18, 2021, 958–972.
[15] Xing E. P. et al.: Petuum: A New Platform for Distributed Machine Learning on Big Data. IEEE Transactions on Big Data 1(2), 2015, 49–67.
[16] Xiong J., Chen H.: Challenges for building a cloud native scalable and trustable multi-tenant AIoT platform. 39th International Conference on Computer-Aided Design - ICCAD'20, Article No. 26, 2020, 1–8.
Article Details
Abstract views: 1

