Computer system for diagnostic and treatment of unilateral neglect syndrome
Article Sidebar
Open full text
Issue Vol. 15 No. 4 (2025)
-
Control of the magnetic levitation using a PID controller with adaptation based on linear interpolation logic and genetic algorithm
Dominik Fila, Andrzej Neumann, Bartosz Olesik, Jakub Pawelec, Kamil Przybylak, Mateusz Ungier, Dawid Wajnert5-9
-
Development of a system for predicting failures of bagging machines
Nataliia Huliieva, Nataliia Lishchyna, Viktoriya Pasternak, Zemfira Huliieva10-13
-
Development and verification of a modular object-oriented fuzzy logic controller architecture for customizable and embedded applications
Rahim Mammadzada14-24
-
Mechanical fracture energy and structural-mechanical properties of meat snacks with beekeeping additives
Artem Antoniv, Igor Palamarchuk, Leonora Adamchuk, Marija Zheplinska25-31
-
Modelling of dynamic processes in a nonholonomic system in the form of Gibbs-Appell equations on the example of a ball mill
Volodymyr Shatokhin, Yaroslav Ivanchuk, Vitaly Liman, Sergii Komar, Oleksii Kozlovskyi32-38
-
Real-time Covid-19 diagnosis on embedded IoT platforms
Elmehdi Benmalek, Wajih Rhalem, Atman Jbari, Abdelilah Jilbab, Jamal Elmhamdi39-45
-
Hybrid models for handwriting-based diagnosis of Parkinson's disease
Asma Ouabd, Achraf Benba, Abdelilah Jilbab, Ahmed Hammouch46-50
-
Computer system for diagnostic and treatment of unilateral neglect syndrome
Krzysztof Strzecha, Agata Bukalska-Strzecha, Krzysztof Kurzdym, Dominik Sankowski51-55
-
Informatics and measurement in healthcare: deep learning for diabetic patient readmission prediction
Shiva Saffari, Mahdi Bahaghighat56-64
-
Optimization of non-invasive glucose monitoring accuracy using an optical sensor
Nurzhigit Smailov, Aliya Zilgarayeva, Sergii Pavlov, Balzhan Turusbekova, Akezhan Sabibolda65-70
-
Stochastic multi-objective minimax optimization of combined electromagnetic shield based on three-dimensional modeling of overhead power lines magnetic field
Borys Kuznetsov, Tatyana Nikitina, Alexander Kutsenko, Ihor Bovdui, Kostiantyn Czunikhin, Olena Voloshko, Roman Voliansky, Viktoriia Ivannikova71-75
-
Advanced energy management strategies for AC/DC microgrids
Zouhir Boumous, Samira Boumous, Tawfik Thelaidjia76-82
-
Experimental study of a multi-stage converter circuit
Kyrmyzy Taissariyeva, Kuanysh Muslimov, Yerlan Tashtay, Gulim Jobalayeva, Lyazzat Ilipbayeva, Ingkar Issakozhayeva, Akezhan Sabibolda83-86
-
Deep learning-based prediction of structural parameters in FDTD-simulated plasmonic nanostructures
Shahed Jahidul Haque, Arman Mohammad Nakib87-94
-
Development of an algorithm for calculating ion exchange processes using the Python ecosystem
Iryna Chub, Oleksii Proskurnia, Kateryna Demchenko, Oleksandr Miroshnyk, Taras Shchur, Serhii Halko95-99
-
Intelligent model for reliability control and safety in urban transport systems
Anastasiia Kashkanova, Alexander Rotshtein, Andrii Kashkanov, Denis Katelnikov100-107
-
Analysis of the interaction of components of a modular parcel storage system using UML diagrams
Lyudmila Samchuk, Yuliia Povstiana, Anastasia Hryshchuk108-116
-
Evaluating modified pairing insertion heuristics for efficient dial-a-ride problem solutions in healthcare logistics
Rodolfo Eleazar Pérez Loaiza, Aaron Guerrero-Campanur, Edmundo Bonilla Huerta117-123
-
Analysis of modern tools, methods of audit and monitoring of database security
Kateryna Mykhailyshyn, Oleh Harasymchuk, Oleh Deineka, Yurii Dreis, Volodymyr Shulha, Yuriy Pepa124-129
-
Improving underwater visuals by fusion of Deep-Retinex and GAN for enhanced image quality in subaquatic environments
Anuradha Chinta, Bharath Kumar Surla, Chaitanya Kodali130-136
-
The mathematical method for assessing the cybersecurity state of cloud services
Yevheniia Ivanchenko, Volodymyr Shulha, Ihor Ivanchenko, Yevhenii Pedchenko, Mari Petrovska137-141
-
Evaluation of the performance of LLMs deployments in selected cloud-based container services
Mateusz Stęgierski, Piotr Szpak, Sławomir Przyłucki142-150
-
Implementing traits in C# using Roslyn Source Generators
Mykhailo Pozur, Viktoria Voitko, Svitlana Bevz, Serhii Burbelo, Olena Kosaruk151-157
-
Impact of customizable orchestrator scheduling on machine learning efficiency in edge environments
Konrad Cłapa, Krzysztof Grudzień, Artur Sierszeń158-163
-
Reconfigured CoARX architecture for implementing ARX hashing in microcontrollers of IoT systems with limited resources
Serhii Zabolotnii, Inna Rozlomii, Andrii Yarmilko, Serhii Naumenko164-169
-
Integral assessment of the spring water quality with the use of fuzzy logic toolkit
Vyacheslav Repeta, Oleksandra Krykhovets, Yurii Kukura170-176
-
Selected issues concerning fibre-optic bending sensors
Les Hotra, Jacek Klimek, Ihor Helzhynskyy, Oksana Boyko, Svitlana Kovtun177-181
Archives
-
Vol. 15 No. 4
2025-12-20 27
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
Main Article Content
DOI
Authors
Abstract
Unilateral Spatial Neglect (USN) is a neuropsychological disorder commonly resulting from right hemisphere brain damage, leading to impaired awareness of stimuli on the left side of space. It significantly affects patient autonomy and rehabilitation outcomes. Traditional therapies such as Visual Scanning Training (VST) and Prism Adaptation (PA) lack standardization and objective diagnostic tools. This paper presents a computer-based system designed to support both diagnosis and therapy of USN. The system uses a 5-meter LED strip to deliver spatially distributed visual stimuli and records patient responses via a physical button. Reaction times and detection data are stored in a local database, enabling objective assessment and personalized therapy planning. The system architecture is modular, based on Clean Architecture principles, and implemented in C++20 on a Raspberry Pi 5 microcomputer. The graphical interface is built using GTKmm 4.0. Therapy sessions follow VST methodology. They include tracking moving stimuli, using visual anchors, and increasing stimulus density. Preliminary trials confirm the system’s ability to differentiate neglect symptoms and support individualized therapy. Its portability, modularity, and integration of diagnostic and therapeutic functions make it a promising tool for clinical neurorehabilitation. Further validation and development are planned to support broader clinical adoption.
Keywords:
References
[1] Armstrong C. L., Morrow L. (eds): Handbook of Medical Neuropsychology. Applications of Cognitive Neuroscience. Springer, New York 2010 [https://doi.org/10.1007/978-1-4419-1364-7].
[2] Berlucchi G., Vallar G.: The history of the neurophysiology and neurology of the parietal lobe. Handb Clin Neurol. 151, 2018, 3–30 [https://doi.org/10.1016/b978-0-444-63622-5.00001-2].
[3] Corbetta M. et al.: Neural basis and recovery of spatial attention deficits in spatial neglect. Nat Neurosci. 8(11), 2005, 1603–1610 [https://doi.org/10.1038/nn1574].
[4] Iglberger K.: C++ Software Design: Design Principles and Patterns for High-Quality Software O'Reilly Media 2022.
[5] Jodzio K. et al.: Cerebral blood flow in patients with various symptoms of hemispatial neglect following ischemic stroke. Neurologia i Neurochirurgia Polska 38(5), 2004, 381–388.
[6] Kleinman J. T. et al.: Right hemispatial neglect: frequency and characterization following acute left hemisphere stroke. Brain Cogn. 64(1), 2007, 50–59 [https://doi.org/10.1016/j.bandc.2006.10.005].
[7] Koch G, Veniero D, Caltagirone C.: To the other side of the neglected brain: the hyperexcitability of the left intact hemisphere. Neuroscientist 19, 2013, 208–217 [https://doi.org/10.1177/1073858412447874].
[8] Konkel M. et al.: Hemispatial neglect in brain stroke patients – review of physical therapy approaches. Forum Medycyny Rodzinnej 9(5), 2015, 405–415.
[9] Martin R. C.: Clean Architecture: A Craftsman's Guide to Software Structure and Design. Prentice Hall 2017.
[10] Polanowska K., Seniów J.: Clinical picture and diagnostics of unilateral neglect syndrome. Med Rehabil 9(3), 2005, 3–12.
[11] Polanowska K.: Differentiating spatial neglect from primary sensory-motor deficits. Neuropsychiatry and Neuropsychology 18(3), 2023, 182–193 [https://doi.org/10.5114/nan.2023.134155].
[12] Ringman J. M. et al.: Frequency, risk factors, anatomy, and course of unilateral neglect in an acute stroke cohort. Neurology 63(3), 2004, 468–474 [https://doi.org/10.1212/01.wnl.0000133011.10689.ce].
[13] Robertson I. H., Halligan P. W.: Spatial neglect: A clinical handbook for diagnosis and treatment. Psychology Press. Taylor & Francis Hove, East Sussex, UK 1999.
[14] Salatino A. et al.: Virtual reality rehabilitation for unilateral spatial neglect: A systematic review of immersive, semi-immersive and non-immersive techniques. Neuroscience and Biobehavioral Reviews 152, 2023, 105248 [https://doi.org/10.1016/j.neubiorev.2023.105248].
[15] Seniów J. (ed.): Terapia neuropsychologiczna dorosłych chorych z uszkodzeniem mózgu. Instytut Psychiatrii i Neurologii, Warszawa 2019.
[16] Vallar G., Calzolari E.: Unilateral spatial neglect after posterior parietal damage. Handb Clin Neurol. 151, 2018, 287–312 [https://doi.org/10.1016/b978-0-444-63622-5.00014-0].
[17] Vallar G.: Extrapersonal visual unilateral spatial neglect and its neuroanatomy. NeuroImage 14(1), 2001, S52–S58 [https://doi.org/10.1006/nimg.2001.0822].
[18] White E.: Making Embedded Systems: Design Patterns for Great Software. O'Reilly Media 2024.
[19] Raspberry Pi Foundation Raspberry Pi Overview. https://www.raspberrypi.com/documentation/computers/raspberry-pi.html (available: 10.08.2025).
[20] Raspberry Pi Foundation Operating System. https://www.raspberrypi.com/documentation/computers/os.html (available: 10.08.2025).
[21] gtkmm Project gtkmm 4.0 C++ Reference Manual. https://gnome.pages.gitlab.gnome.org/gtkmm-documentation (available: 10.08.2025).
[22] SQLite Home Page. https://sqlite.org/ (available: 10.08.2025).
[23] Worldsemi: WS2812B – Intelligent Control LED Datasheet. https://cdn-shop.adafruit.com/datasheets/WS2812B.pdf (available: 16.10.2025).
Article Details
Abstract views: 1

