Development and verification of a modular object-oriented fuzzy logic controller architecture for customizable and embedded applications
Article Sidebar
Open full text
Issue Vol. 15 No. 4 (2025)
-
Control of the magnetic levitation using a PID controller with adaptation based on linear interpolation logic and genetic algorithm
Dominik Fila, Andrzej Neumann, Bartosz Olesik, Jakub Pawelec, Kamil Przybylak, Mateusz Ungier, Dawid Wajnert5-9
-
Development of a system for predicting failures of bagging machines
Nataliia Huliieva, Nataliia Lishchyna, Viktoriya Pasternak, Zemfira Huliieva10-13
-
Development and verification of a modular object-oriented fuzzy logic controller architecture for customizable and embedded applications
Rahim Mammadzada14-24
-
Mechanical fracture energy and structural-mechanical properties of meat snacks with beekeeping additives
Artem Antoniv, Igor Palamarchuk, Leonora Adamchuk, Marija Zheplinska25-31
-
Modelling of dynamic processes in a nonholonomic system in the form of Gibbs-Appell equations on the example of a ball mill
Volodymyr Shatokhin, Yaroslav Ivanchuk, Vitaly Liman, Sergii Komar, Oleksii Kozlovskyi32-38
-
Real-time Covid-19 diagnosis on embedded IoT platforms
Elmehdi Benmalek, Wajih Rhalem, Atman Jbari, Abdelilah Jilbab, Jamal Elmhamdi39-45
-
Hybrid models for handwriting-based diagnosis of Parkinson's disease
Asma Ouabd, Achraf Benba, Abdelilah Jilbab, Ahmed Hammouch46-50
-
Computer system for diagnostic and treatment of unilateral neglect syndrome
Krzysztof Strzecha, Agata Bukalska-Strzecha, Krzysztof Kurzdym, Dominik Sankowski51-55
-
Informatics and measurement in healthcare: deep learning for diabetic patient readmission prediction
Shiva Saffari, Mahdi Bahaghighat56-64
-
Optimization of non-invasive glucose monitoring accuracy using an optical sensor
Nurzhigit Smailov, Aliya Zilgarayeva, Sergii Pavlov, Balzhan Turusbekova, Akezhan Sabibolda65-70
-
Stochastic multi-objective minimax optimization of combined electromagnetic shield based on three-dimensional modeling of overhead power lines magnetic field
Borys Kuznetsov, Tatyana Nikitina, Alexander Kutsenko, Ihor Bovdui, Kostiantyn Czunikhin, Olena Voloshko, Roman Voliansky, Viktoriia Ivannikova71-75
-
Advanced energy management strategies for AC/DC microgrids
Zouhir Boumous, Samira Boumous, Tawfik Thelaidjia76-82
-
Experimental study of a multi-stage converter circuit
Kyrmyzy Taissariyeva, Kuanysh Muslimov, Yerlan Tashtay, Gulim Jobalayeva, Lyazzat Ilipbayeva, Ingkar Issakozhayeva, Akezhan Sabibolda83-86
-
Deep learning-based prediction of structural parameters in FDTD-simulated plasmonic nanostructures
Shahed Jahidul Haque, Arman Mohammad Nakib87-94
-
Development of an algorithm for calculating ion exchange processes using the Python ecosystem
Iryna Chub, Oleksii Proskurnia, Kateryna Demchenko, Oleksandr Miroshnyk, Taras Shchur, Serhii Halko95-99
-
Intelligent model for reliability control and safety in urban transport systems
Anastasiia Kashkanova, Alexander Rotshtein, Andrii Kashkanov, Denis Katelnikov100-107
-
Analysis of the interaction of components of a modular parcel storage system using UML diagrams
Lyudmila Samchuk, Yuliia Povstiana, Anastasia Hryshchuk108-116
-
Evaluating modified pairing insertion heuristics for efficient dial-a-ride problem solutions in healthcare logistics
Rodolfo Eleazar Pérez Loaiza, Aaron Guerrero-Campanur, Edmundo Bonilla Huerta117-123
-
Analysis of modern tools, methods of audit and monitoring of database security
Kateryna Mykhailyshyn, Oleh Harasymchuk, Oleh Deineka, Yurii Dreis, Volodymyr Shulha, Yuriy Pepa124-129
-
Improving underwater visuals by fusion of Deep-Retinex and GAN for enhanced image quality in subaquatic environments
Anuradha Chinta, Bharath Kumar Surla, Chaitanya Kodali130-136
-
The mathematical method for assessing the cybersecurity state of cloud services
Yevheniia Ivanchenko, Volodymyr Shulha, Ihor Ivanchenko, Yevhenii Pedchenko, Mari Petrovska137-141
-
Evaluation of the performance of LLMs deployments in selected cloud-based container services
Mateusz Stęgierski, Piotr Szpak, Sławomir Przyłucki142-150
-
Implementing traits in C# using Roslyn Source Generators
Mykhailo Pozur, Viktoria Voitko, Svitlana Bevz, Serhii Burbelo, Olena Kosaruk151-157
-
Impact of customizable orchestrator scheduling on machine learning efficiency in edge environments
Konrad Cłapa, Krzysztof Grudzień, Artur Sierszeń158-163
-
Reconfigured CoARX architecture for implementing ARX hashing in microcontrollers of IoT systems with limited resources
Serhii Zabolotnii, Inna Rozlomii, Andrii Yarmilko, Serhii Naumenko164-169
-
Integral assessment of the spring water quality with the use of fuzzy logic toolkit
Vyacheslav Repeta, Oleksandra Krykhovets, Yurii Kukura170-176
-
Selected issues concerning fibre-optic bending sensors
Les Hotra, Jacek Klimek, Ihor Helzhynskyy, Oksana Boyko, Svitlana Kovtun177-181
Archives
-
Vol. 15 No. 4
2025-12-20 27
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
Main Article Content
DOI
Authors
Abstract
This paper presents an open-source and lightweight, object-oriented fuzzy logic controller architecture designed to overcome key limitations of popular platforms like MATLAB and LabVIEW. These traditional tools, while widely used, are closed-source and license-dependent, creating barriers to portability, system-level integration, and long-term flexibility. This modular framework breaks the controller into reusable components implemented as separate classes, all coordinated by a central controller class that manages the full inference cycle from input fuzzification to output defuzzification. This central controller can be easily customized for different control scenarios, as demonstrated here through validation on both single-input and multi-input cases. The results confirm that the architecture delivers reliable and consistent performance while scaling smoothly to handle increased input complexity without redesigning core components. This approach offers a transparent, maintainable, and flexible alternative that empowers developers with full control over their fuzzy logic implementations and supports integration in a variety of software and embedded environments.
Keywords:
References
[1] Abdrakhmanov R. et al.: Intelligent Fuzzy-PID Temperature Control System for Ensuring Comfortable Microclimate in an Intelligent Building. IJACSA 15(3), 2024 [https://doi.org/10.14569/IJACSA.2024.0150331].
[2] Aliyeva K.: Estimation of Renewable Energy Sources under Uncertainty Using Fuzzy AHP Method. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 15(2), 104–109, 2025 [https://doi.org/10.35784/iapgos.7191].
[3] Bakirova L., Yusubov E.: Design and Simulation of the Auto-Tuning TS-Fuzzy PID Controller for the DC-DC ZETA Converter. In CEUR Workshop Proceedings, 238–243, 2021 [https://elibrary.ru/item.asp?id=49020698].
[4] Belman-Flores, J. M. et al.: A Review on Applications of Fuzzy Logic Control for Refrigeration Systems. Applied Sciences 12(3), 1302, 2022 [https://doi.org/10.3390/app12031302].
[5] Brucal S. G. E., Africa A. D. M., de Jesus L. C. M.: Optimizing Air Conditioning Unit Power Consumption in an Educational Building: A Rough Set Theory and Fuzzy Logic-Based Approach. Applied System Innovation 8(2), 2025, 32 [https://doi.org/10.3390/asi8020032].
[6] Boll A. et al.: Characteristics, potentials, and limitations of open-source Simulink projects for empirical research. Software and Systems Modeling 20(6), 2021, 2111–2130 [https://doi.org/10.1007/s10270-021-00883-0].
[7] Boulkroune A. et al.: Output-Feedback Controller Based Projective Lag-Synchronization of Uncertain Chaotic Systems in the Presence of Input Nonlinearities. Mathematical Problems in Engineering 2017(1), 8045803 [https://doi.org/10.1155/2017/8045803].
[8] Boulkroune A., Zouari F., Boubellouta A.: Adaptive Fuzzy Control for Practical Fixed-Time Synchronization of Fractional-Order Chaotic Systems. Journal of Vibration and Control 10775463251320258, 2025 [https://doi.org/10.1177/10775463251320258].
[9] Boll A., Vieregg N., Kehrer T.: Replicability of experimental tool evaluations in model-based software and systems engineering with MATLAB/Simulink. Innovations in Systems and Software Engineering 20(3), 2024, 209–224 [https://doi.org/10.1007/s11334-022-00442-w].
[10] Chen Y., Huang L.: Object-Oriented Programming. Chen Y., Huang L. (eds): MATLAB Roadmap to Applications: Volume I Fundamental, Springer Nature, Singapore, 2025, 399–439 [https://doi.org/10.1007/978-981-97-8788-3_10].
[11] Chojecki A., Ambroziak A., Borkowski P.: Fuzzy Controllers Instead of Classical PIDs in HVAC Equipment: Dusting Off a Well-Known Technology and Today’s Implementation for Better Energy Efficiency and User Comfort. Energies 16(7), 2023, 2967 [https://doi.org/10.3390/en16072967].
[12] Dumitrescu C., Ciotirnae P., Vizitiu C.: Fuzzy Logic for Intelligent Control System Using Soft Computing Applications. Sensors 21(8), 2021, 2617 [https://doi.org/10.3390/s21082617].
[13] Ferrara P., Arceri V., Cortesi A.: Challenges of software verification: the past, the present, the future. International Journal on Software Tools for Technology Transfer 26(4), 2024, 421–430 [https://doi.org/10.1007/s10009-024-00765-y].
[14] García-Martínez J. R. et al.: A PID-Type Fuzzy Logic Controller-Based Approach for Motion Control Applications. Sensors 20(18), 2020, 5323 [https://doi.org/10.3390/s20185323].
[15] Haghrah A. A., Ghaemi S., Badamchizadeh M. A.: PyIT2FLS: An open-source Python framework for flexible and scalable development of type 1 and interval type 2 fuzzy logic models. SoftwareX 30, 2025, 102146 [https://doi.org/10.1016/j.softx.2025.102146].
[16] Hongli L., Peiyong D., Lei J.: A Novel Fuzzy Controller Design based-on PID Gains for HVAC Systems. 7th World Congress on Intelligent Control and Automation, 2008, 736–739 [https://doi.org/10.1109/WCICA.2008.4593014].
[17] Merazka L., Zouari F., Boulkroune A.: High-Gain Observer-Based Adaptive Fuzzy Control for a Class of Multivariable Nonlinear Systems. 6th International Conference on Systems and Control (ICSC), 96–102 [https://doi.org/10.1109/ICoSC.2017.7958728].
[18] Mammadov R.: Optimal Load Shedding for Power Systems Using the Binary Exhaustive Search Method. International Conference on Intelligent and Fuzzy Systems. Springer Nature Switzerland, Cham 2025, 175–183 [https://doi.org/10.1007/978-3-031-98304-7_20].
[19] Mammadzada R.: A Script-Based Approach for Automating Fuzzy-PID Rule Assignment from 7×7 Tables to FIS Files. 6th International Conference on Problems of Cybernetics and Informatics (PCI), Baku, Azerbaijan, 2025, 1–4 [https://doi.org/10.1109/PCI66488.2025.11219882].
[20] Mammadzada R., Aliyeva K.: Modulation For Information Measurement System In Context Of Software Development Using Node Based Graphical Editor. International Research, Education & Training Center, 24(3), 2023, 143–151 [https://doi.org/10.36962/piretc24032023-143].
[21] Mammadzada R.: Virtual Temperature Control in Unity Environment with ML Agents. Azerbaijan Higher Technical Educational Institutions 26(3-4), 2024, 51–55 [https://doi.org/10.36962/PAHTEI149032024-51].
[22] Matos V. S. et al.: Embedded predictive controller based on fuzzy linear parameter-varying model: A hardware-in-the-loop application to an ESP-lifted oil well system. Digital Chemical Engineering 5, 2022, 100054 [https://doi.org/10.1016/j.dche.2022.100054].
[23] Pérez-Juárez J. G. et al.: Kinematic Fuzzy Logic-Based Controller for Trajectory Tracking of Wheeled Mobile Robots in Virtual Environments. Symmetry 17(2), 2025, 301 [https://doi.org/10.3390/sym17020301].
[24] Rajeswari Subramaniam K., Cheng C. T., Pang T. Y.: Fuzzy Logic Controlled Simulation in Regulating Thermal Comfort and Indoor Air Quality Using a Vehicle Heating, Ventilation, and Air-Conditioning System. Sensors 23(3), 1395, 2023 [https://doi.org/10.3390/s23031395].
[25] Rigatos G. et al.: Nonlinear Optimal Control for a Gas Compressor Driven by an Induction Motor. Results in Control and Optimization 11, 100226, 2023 [https://doi.org/10.1016/j.rico.2023.100226].
[26] Saatchi R.: Fuzzy Logic Concepts, Developments and Implementation. Information 15(10), 2024, 656 [https://doi.org/10.3390/info15100656].
[27] Sheng T., Luo H., Wu M.: Design and Simulation of a Multi-Channel Biomass Hot Air Furnace with an Intelligent Temperature Control System. Agriculture 14(3), 2024, 419 [https://doi.org/10.3390/agriculture14030419].
[28] Shrestha S. L., Chowdhury S. A., Csallner C.: SLNET: A Redistributable Corpus of 3rd-party Simulink Models. IEEE/ACM 19th International Conference on Mining Software Repositories (MSR), 2022, 1–5 [https://doi.org/10.1145/3524842.3528001].
[29] Spolaor S. et al.: Simpful: A User-Friendly Python Library for Fuzzy Logic. International Journal of Computational Intelligence Systems 13(1), 2020, 1687–1698 [https://doi.org/10.2991/ijcis.d.201012.002].
[30] Sun W. et al.: Fuzzy Control Algorithm Applied on Constant Airflow Controlling of Fans. Energies 16(11), 4425, 2023 [https://doi.org/10.3390/en16114425].
[31] Tang H. H., Ahmad N. S.: Fuzzy logic approach for controlling uncertain and nonlinear systems: a comprehensive review of applications and advances. Systems Science & Control Engineering 12(1), 2024, 2394429 [https://doi.org/10.1080/21642583.2024.2394429].
[32] Xakimovich S. I., Maxamadjonovna U. D.: Fuzzy-Logical Control Models of Nonlinear Dynamic Objects. Advances in Science, Technology and Engineering Systems 5(4), 419–423, 2020 [https://doi.org/10.25046/aj050449].
[33] Yusubov E., Bakirova L.: A Self-Tuning Fuzzy PID Controller for SEPIC Based on Takagi-Sugeno Inference System. International Conference Automatics and Informatics (ICAI), IEEE, 2021, 54–57 [https://doi.org/10.1109/ICAI52893.2021.9639804].
[34] Zadeh L. A.: Fuzzy sets. Information and Control 8, 1965, 338–353.
[35] Zhang D., Chen T.: Scikit-ANFIS: A Scikit-Learn Compatible Python Implementation for Adaptive Neuro-Fuzzy Inference System. International Journal of Fuzzy Systems 26(6), 2024, 2039–2057 [https://doi.org/10.1007/s40815-024-01697-0].
[36] Zhang S., Li T., Chen L.: Fuzzy Logic Control of External Heating System for Electric Vehicle Batteries at Low Temperature. WEVJ 14(4), 2023, 99 [https://doi.org/10.3390/wevj14040099].
[37] Zhang W. et al.: An empirical study of manual abstraction between class diagrams and code of open-source systems. Software and Systems Modeling, 2025 [https://doi.org/10.1007/s10270-025-01289-y].
[38] Zouari F., Ben Saad K., Benrejeb M.: Adaptive Backstepping Control for a Class of Uncertain Single Input Single Output Nonlinear Systems. 10th International Multi-Conferences on Systems, Signals & Devices 2013 (SSD13), 1–6 [https://doi.org/10.1109/SSD.2013.6564134].
[39] Zouari F., Saad K. B., Benrejeb M.: Robust Neural Adaptive Control for a Class of Uncertain Nonlinear Complex Dynamical Multivariable Systems. International Review on Modelling and Simulations 5(5), 2075–2103, 2012 [https://www.scopus.com/pages/publications/84873265173].
Article Details
Abstract views: 1

