Optimization of non-invasive glucose monitoring accuracy using an optical sensor
Article Sidebar
Open full text
Issue Vol. 15 No. 4 (2025)
-
Control of the magnetic levitation using a PID controller with adaptation based on linear interpolation logic and genetic algorithm
Dominik Fila, Andrzej Neumann, Bartosz Olesik, Jakub Pawelec, Kamil Przybylak, Mateusz Ungier, Dawid Wajnert5-9
-
Development of a system for predicting failures of bagging machines
Nataliia Huliieva, Nataliia Lishchyna, Viktoriya Pasternak, Zemfira Huliieva10-13
-
Development and verification of a modular object-oriented fuzzy logic controller architecture for customizable and embedded applications
Rahim Mammadzada14-24
-
Mechanical fracture energy and structural-mechanical properties of meat snacks with beekeeping additives
Artem Antoniv, Igor Palamarchuk, Leonora Adamchuk, Marija Zheplinska25-31
-
Modelling of dynamic processes in a nonholonomic system in the form of Gibbs-Appell equations on the example of a ball mill
Volodymyr Shatokhin, Yaroslav Ivanchuk, Vitaly Liman, Sergii Komar, Oleksii Kozlovskyi32-38
-
Real-time Covid-19 diagnosis on embedded IoT platforms
Elmehdi Benmalek, Wajih Rhalem, Atman Jbari, Abdelilah Jilbab, Jamal Elmhamdi39-45
-
Hybrid models for handwriting-based diagnosis of Parkinson's disease
Asma Ouabd, Achraf Benba, Abdelilah Jilbab, Ahmed Hammouch46-50
-
Computer system for diagnostic and treatment of unilateral neglect syndrome
Krzysztof Strzecha, Agata Bukalska-Strzecha, Krzysztof Kurzdym, Dominik Sankowski51-55
-
Informatics and measurement in healthcare: deep learning for diabetic patient readmission prediction
Shiva Saffari, Mahdi Bahaghighat56-64
-
Optimization of non-invasive glucose monitoring accuracy using an optical sensor
Nurzhigit Smailov, Aliya Zilgarayeva, Sergii Pavlov, Balzhan Turusbekova, Akezhan Sabibolda65-70
-
Stochastic multi-objective minimax optimization of combined electromagnetic shield based on three-dimensional modeling of overhead power lines magnetic field
Borys Kuznetsov, Tatyana Nikitina, Alexander Kutsenko, Ihor Bovdui, Kostiantyn Czunikhin, Olena Voloshko, Roman Voliansky, Viktoriia Ivannikova71-75
-
Advanced energy management strategies for AC/DC microgrids
Zouhir Boumous, Samira Boumous, Tawfik Thelaidjia76-82
-
Experimental study of a multi-stage converter circuit
Kyrmyzy Taissariyeva, Kuanysh Muslimov, Yerlan Tashtay, Gulim Jobalayeva, Lyazzat Ilipbayeva, Ingkar Issakozhayeva, Akezhan Sabibolda83-86
-
Deep learning-based prediction of structural parameters in FDTD-simulated plasmonic nanostructures
Shahed Jahidul Haque, Arman Mohammad Nakib87-94
-
Development of an algorithm for calculating ion exchange processes using the Python ecosystem
Iryna Chub, Oleksii Proskurnia, Kateryna Demchenko, Oleksandr Miroshnyk, Taras Shchur, Serhii Halko95-99
-
Intelligent model for reliability control and safety in urban transport systems
Anastasiia Kashkanova, Alexander Rotshtein, Andrii Kashkanov, Denis Katelnikov100-107
-
Analysis of the interaction of components of a modular parcel storage system using UML diagrams
Lyudmila Samchuk, Yuliia Povstiana, Anastasia Hryshchuk108-116
-
Evaluating modified pairing insertion heuristics for efficient dial-a-ride problem solutions in healthcare logistics
Rodolfo Eleazar Pérez Loaiza, Aaron Guerrero-Campanur, Edmundo Bonilla Huerta117-123
-
Analysis of modern tools, methods of audit and monitoring of database security
Kateryna Mykhailyshyn, Oleh Harasymchuk, Oleh Deineka, Yurii Dreis, Volodymyr Shulha, Yuriy Pepa124-129
-
Improving underwater visuals by fusion of Deep-Retinex and GAN for enhanced image quality in subaquatic environments
Anuradha Chinta, Bharath Kumar Surla, Chaitanya Kodali130-136
-
The mathematical method for assessing the cybersecurity state of cloud services
Yevheniia Ivanchenko, Volodymyr Shulha, Ihor Ivanchenko, Yevhenii Pedchenko, Mari Petrovska137-141
-
Evaluation of the performance of LLMs deployments in selected cloud-based container services
Mateusz Stęgierski, Piotr Szpak, Sławomir Przyłucki142-150
-
Implementing traits in C# using Roslyn Source Generators
Mykhailo Pozur, Viktoria Voitko, Svitlana Bevz, Serhii Burbelo, Olena Kosaruk151-157
-
Impact of customizable orchestrator scheduling on machine learning efficiency in edge environments
Konrad Cłapa, Krzysztof Grudzień, Artur Sierszeń158-163
-
Reconfigured CoARX architecture for implementing ARX hashing in microcontrollers of IoT systems with limited resources
Serhii Zabolotnii, Inna Rozlomii, Andrii Yarmilko, Serhii Naumenko164-169
-
Integral assessment of the spring water quality with the use of fuzzy logic toolkit
Vyacheslav Repeta, Oleksandra Krykhovets, Yurii Kukura170-176
-
Selected issues concerning fibre-optic bending sensors
Les Hotra, Jacek Klimek, Ihor Helzhynskyy, Oksana Boyko, Svitlana Kovtun177-181
Archives
-
Vol. 15 No. 4
2025-12-20 27
-
Vol. 15 No. 3
2025-09-30 24
-
Vol. 15 No. 2
2025-06-27 24
-
Vol. 15 No. 1
2025-03-31 26
-
Vol. 14 No. 4
2024-12-21 25
-
Vol. 14 No. 3
2024-09-30 24
-
Vol. 14 No. 2
2024-06-30 24
-
Vol. 14 No. 1
2024-03-31 23
-
Vol. 13 No. 4
2023-12-20 24
-
Vol. 13 No. 3
2023-09-30 25
-
Vol. 13 No. 2
2023-06-30 14
-
Vol. 13 No. 1
2023-03-31 12
-
Vol. 12 No. 4
2022-12-30 16
-
Vol. 12 No. 3
2022-09-30 15
-
Vol. 12 No. 2
2022-06-30 16
-
Vol. 12 No. 1
2022-03-31 9
-
Vol. 11 No. 4
2021-12-20 15
-
Vol. 11 No. 3
2021-09-30 10
-
Vol. 11 No. 2
2021-06-30 11
-
Vol. 11 No. 1
2021-03-31 14
Main Article Content
DOI
Authors
b.turusbekova@satbayev.university
Abstract
The development of non-invasive blood glucose monitoring technologies is progressing steadily, largely due to advancements in optical sensor systems. These systems assess physiological data by analyzing how light interacts with biological tissues. A common technique, near-infrared spectroscopy, typically utilizes wavelengths such as 500 nm, 970 nm, 1400 nm, and 1900 nm, selected for their enhanced responsiveness to glucose levels at varying tissue depths. In experimental settings, this method has demonstrated the ability to generate electrical signals that correlate with glucose concentrations, supporting its potential for accurate glucose tracking. The technique adheres to both detection and precision standards, particularly at higher glucose concentrations, making it a strong candidate for next-generation monitoring solutions. The study also outlines future objectives, including improving sensor accuracy, reducing device size, and enabling seamless integration with both clinical and home-based healthcare systems. Moreover, efforts to minimize interference and signal distortions are explored as part of the broader aim to refine system reliability.
Keywords:
References
[1] Abdykadyrov A. et al.: Optimization of Distributed Acoustic Sensors Based on Fiber Optic Technologies. Eastern-European Journal of Enterprise Technologies 5(5(131)), 2024, 50–59 [https://doi.org/10.15587/1729-4061.2024.313455].
[2] Dosbayev Z. et al.: Development of a Literacy Enhancement System Based on IoT and Web Technologies: Integration of ESP8266 and Laravel. Eastern-European Journal of Enterprise Technologies 4, (9(136)), 2025, 51–60 [https://doi.org/10.15587/1729-4061.2025.337999].
[3] Hina A., Saadeh W.: Noninvasive Blood Glucose Monitoring Systems Using Near-Infrared Technology—A Review. Sensors 22(13), 2022, 4855 [https://doi.org/10.3390/s22134855].
[4] Ionescu M., Doctorala S.: Measuring and Detecting Blood Glucose by Methods Non-Invasive. IEEE 10th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), 2018, 1–7 [https://doi.org/10.1109/ECAI.2018.8678943].
[5] Kengesbayeva S. et al.: Research of Deformation of Concrete Structures Using Fiber Optic Sensors and Bragg Gratings. IEEE International Conference on Electrical Engineering and Photonics (EexPolytech), 2024 [https://doi.org/10.1109/eexpolytech62224.2024.10755828].
[6] Kiesewetter D. et al.: Application of Fiber Bragg Gratings as a Sensor of Pulsed Mechanical Action. Sensors 22(19), 2022, 7289 [https://doi.org/10.3390/s22197289].
[7] Koschinsky T., Heinemann L.: Sensors for Glucose Monitoring: Technical and Clinical Aspects. Diabetes/Metabolism Research and Reviews 17(2), 2001, 113–123 [https://doi.org/10.1002/dmrr.188].
[8] Leung H. M. C. et al.: Noninvasive Glucose Sensing In Vivo. Sensors 23(16), 2023, 7057 [https://doi.org/10.3390/s23167057].
[9] Lin X. et al.: Global, Regional, and National Burden and Trend of Diabetes in 195 Countries and Territories: An Analysis from 1990 to 2025. Scientific Reports 10(1), 2020, 14790 [https://doi.org/10.1038/s41598-020-71908-9].
[10] Mohamad Yunos M. F. A., Nordin A. N.: Non-Invasive Glucose Monitoring Devices: A Review. Bulletin of Electrical Engineering and Informatics 9(6), 2020, 2609–2618 [https://doi.org/10.11591/eei.v9i6.2628].
[11] Mulvaney S. P., Keating C. D.: Raman Spectroscopy. Analytical Chemistry 72(12), 2000, 145–158 [https://doi.org/10.1021/a10000155].
[12] Ogurtsova K. et al.: IDF Diabetes Atlas: Global Estimates of Undiagnosed Diabetes in Adults for 2021. Diabetes Research and Clinical Practice 183, 2022, 109118 [https://doi.org/10.1016/j.diabres.2021.109118].
[13] Peng B. et al.: Evaluation of Enzyme-Based Tear Glucose Electrochemical Sensors over a Wide Range of Blood Glucose Concentrations. Biosensors and Bioelectronics 49, 2013, 204–209 [https://doi.org/10.1016/j.bios.2013.05.014].
[14] Peng Z. et al.: Blood Glucose Sensors and Recent Advances: A Review. Journal of Innovative Optical Health Sciences 15(2), 2022 [https://doi.org/10.1142/S1793545822300038].
[15] Phoswa W. N., Mokgalaboni K.: Immunological Imbalances Associated with Epileptic Seizures in Type 2 Diabetes Mellitus. Brain Sciences 13(5), 2023, 732 [https://doi.org/10.3390/brainsci13050732].
[16] Rajaguru Jayanthi R. K. et al.: The Effect of Temperature on Permittivity Measurements of Aqueous Solutions of Glucose for the Development of Non-Invasive Glucose Sensors Based on Electromagnetic Waves. Results in Engineering 20, 2023, 101506 [https://doi.org/10.1016/j.rineng.2023.101506].
[17] Smailov N. et al.: Fiber Laser-Based Two-Wavelength Sensors for Detecting Temperature and Strain on Concrete Structures. International Journal of Innovative Research and Scientific Studies 7(4), 2024, 1693–1710 [https://doi.org/10.53894/ijirss.v7i4.3481].
[18] Tashtay Y. et al.: Integration of GNSS and Fiber-Optic Gyroscope: Improving Navigation Robustness under Satellite Signal Loss. IEEE International Conference on Electrical Engineering and Photonics (EexPolytech), 2025, 412–415 [https://doi.org/10.1109/EExPolytech66949.2025.11253802].
[19] Wagner J., Tennen H., Wolpert H.: Continuous Glucose Monitoring: A Review for Behavioral Researchers. Psychosomatic Medicine 74(4), 2012, 356–365 [https://doi.org/10.1097/PSY.0b013e31825769ac].
[20] Yadav J. et al.: Prospects and Limitations of Non-Invasive Blood Glucose Monitoring Using Near-Infrared Spectroscopy. Biomedical Signal Processing and Control 18, 2015, 214–227 [https://doi.org/10.1016/j.bspc.2015.01.005].
[21] Zilgarayeva A. et al.: Optical Sensor to Improve the Accuracy of Non-Invasive Blood Sugar Monitoring. Indonesian Journal of Electrical Engineering and Computer Science 34(3), 2024, 1489–1498 [https://doi.org/10.11591/ijeecs.v34.i3.pp1489-1498].
Article Details
Abstract views: 1

