NOVEL HYBRID ALGORITHM USING CONVOLUTIONAL AUTOENCODER WITH SVM FOR ELECTRICAL IMPEDANCE TOMOGRAPHY AND ULTRASOUND COMPUTED TOMOGRAPHY

Łukasz Maciura

lukasz.maciura@netrix.com.pl
Research and Development Center, Netrix S.A,. Lublin, Poland (Poland)
http://orcid.org/0000-0001-8657-3472

Dariusz Wójcik


Research and Development Center, Netrix S.A,. Lublin, Poland (Poland)
http://orcid.org/0000-0002-4200-3432

Tomasz Rymarczyk


Research and Development Center, Netrix S.A,. Lublin, Poland (Poland)
http://orcid.org/0000-0002-3524-9151

Krzysztof Król


Research and Development Center, Netrix S.A,. Lublin, Poland (Poland)
http://orcid.org/0000-0002-0114-2794

Abstract

This paper presents a new hybrid algorithm using multiple Support Vector Machines models with convolutional autoencoder to Electrical Impedance Tomography, and Ultrasound Computed Tomography image reconstruction. The ultimate hybrid solution uses multiple SVM models to convert input measurements to individual autoencoder codes representing a given scene then the decoder part of the autoencoder can reconstruct the scene


Keywords:

convolutional autoencoder, SVM, electrical impedance tomography, ultrasound transmission tomography

Aziz Taha A., Hanbury A.: Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Medical Imaging 15(29), 2015, 1–28.
DOI: https://doi.org/10.1186/s12880-015-0068-x   Google Scholar

Chen B. et al.: Extended Joint Sparsity Reconstruction for Spatial and Temporal ERT Imaging. Sensors 18, 2018, 4014.
DOI: https://doi.org/10.3390/s18114014   Google Scholar

Chen P. H. et al.: A tutorial on ν-support vector machines. Applied Stochastic Models in Business and Industry 21, 2005, 111–136.
DOI: https://doi.org/10.1002/asmb.537   Google Scholar

Chen Z. et al.: Application of Deep Neural Network to the Reconstruction of Two-Phase Material Imaging by Capacitively Coupled Electrical Resistance Tomography. Electronics 10, 2021, 1058.
DOI: https://doi.org/10.3390/electronics10091058   Google Scholar

Duraj A., Korzeniewska E., Krawczyk A.: Classification algorithms to identify changes in resistance. Przegląd Elektrotechniczny 91(12), 2015, 82–84.
DOI: https://doi.org/10.15199/48.2015.12.19   Google Scholar

Dusek J., Mikulka J.: Measurement-Based Domain Parameter Optimization in Electrical Impedance Tomography Imaging. Sensors 21, 2021, 2507.
DOI: https://doi.org/10.3390/s21072507   Google Scholar

Fan Y. et al.: DDN: dual domain network architecture for non-linear ultrasound transmission tomography reconstruction. Proc. SPIE 11602, 2021, 1160209 [http://doi.org/10.1117/12.2580911].
DOI: https://doi.org/10.1117/12.2580911   Google Scholar

Fan Y., Ying L.: Solving electrical impedance tomography with deep learning. Journal of Computational Physics 404, 2020, 109119.
DOI: https://doi.org/10.1016/j.jcp.2019.109119   Google Scholar

Fernandez-Fuentes X. et al.: Towards a Fast and Accurate EIT Inverse Problem Solver: A Machine Learning Approach. Electronics 7(12), 2018, 422.
DOI: https://doi.org/10.3390/electronics7120422   Google Scholar

Hamilton S. J., Hauptmann A.: Deep D – bar: Real time Electrical Impedance Tomography Imaging with Deep Neural Networks. IEEE Trans. Med. Imaging 37(10), 2018, 2367–2377.
DOI: https://doi.org/10.1109/TMI.2018.2828303   Google Scholar

Józefczak A. et al.: Ultrasound transmission tomography-guided heating with nanoparticles. Measurement 197, 2022, [http://doi.org/10.1016/j.measurement.2022.111345].
DOI: https://doi.org/10.1016/j.measurement.2022.111345   Google Scholar

Kania K. et al.: Image reconstruction in ultrasound transmission tomography using the Fermat's Principle. Przegląd Elektrotechniczny 96(1), 2020, 186–189.
DOI: https://doi.org/10.15199/48.2020.01.41   Google Scholar

Khan T. A., Ling S.H.: Review on Electrical Impedance Tomography: Artificial Intelligence Methods and its Applications. Algorithms 12(5), 2019, 1–18.
DOI: https://doi.org/10.3390/a12050088   Google Scholar

Kłosowski G. et al.: Comparison of Machine Learning Methods for Image Reconstruction Using the LSTM Classifier in Industrial Electrical Tomography. Energies 14(21), 2021, 7269.
DOI: https://doi.org/10.3390/en14217269   Google Scholar

Kłosowski G. et al.: Maintenance of industrial reactors supported by deep learning driven ultrasound tomography. Przegląd Elektrotechniczny 98(4), 2022, 138–147.
DOI: https://doi.org/10.17531/ein.2020.1.16   Google Scholar

Kłosowski G. et al.: Neural hybrid tomograph for monitoring industrial reactors, Przegląd Elektrotechniczny 96(12), 2020, 190–193.
DOI: https://doi.org/10.15199/48.2020.12.40   Google Scholar

Kłosowski G. et al.: Quality Assessment of the Neural Algorithms on the Example of EIT-UST Hybrid Tomography. Sensors 20(11), 2020, 3324.
DOI: https://doi.org/10.3390/s20113324   Google Scholar

Kozłowski E. et al.: Logistic regression in image reconstruction in electrical impedance tomography, Przegląd Elektrotechniczny 96(5), 2020, 95–98.
DOI: https://doi.org/10.15199/48.2020.05.19   Google Scholar

Krawczyk A., Korzeniewska E.: Magnetophosphenes–history and contemporary implications. Przegląd Elektrotechniczny 94(1), 2018, 61–64.
DOI: https://doi.org/10.15199/48.2018.12.52   Google Scholar

Li X. et al.: An image reconstruction framework based on deep neural network for electrical impedance tomography. IEEE International Conference on Image Processing, Beijing, China, 2017.
DOI: https://doi.org/10.1109/ICIP.2017.8296950   Google Scholar

Li X. et. al.: A novel deep neural network method for electrical impedance tomography. Transactions of the Institute of Measurement and Control 41(14), 2019, 4035–4049.
DOI: https://doi.org/10.1177/0142331219845037   Google Scholar

Łukiański M., Wajman R.: The diagnostic of two-phase separation process using digital image segmentation algorithms. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 10(3), 2020, 5–8.
DOI: https://doi.org/10.35784/iapgos.1544   Google Scholar

Mosorov V. et al.: Plug Regime Flow Velocity Measurement Problem Based on Correlability Notion and Twin Plane Electrical Capacitance Tomography: Use Case. Sensors 21(6), 2021, 2189 [http://doi.org/10.3390/s21062189].
DOI: https://doi.org/10.3390/s21062189   Google Scholar

Seo J. K. et al.: A Learning – Based Method for Solving III – Posed Nonlinear Inverse Problems: A Simulation Study of Lung EIT, SIAM. Journal on Imaging Sciences 12(3), 2019.
DOI: https://doi.org/10.1137/18M1222600   Google Scholar

Szczesny A., Korzeniewska E.: Selection of the method for the earthing resistance measurement. Przegląd Elektrotechniczny 94, 2018, 178–181.
  Google Scholar

Yu H., Kim S.: SVM Tutorial: Classification, Regression, and Ranking. Handbook of Natural computing, 2012.
DOI: https://doi.org/10.1007/978-3-540-92910-9_15   Google Scholar

Zhao W. et al.: Ultrasound transmission tomography image reconstruction with a fully convolutional neural network. Phys Med Biol. 65(23), 2020, 235021, [http://doi.org/10.1088/1361-6560/abb5c3. PMID: 33245050].
DOI: https://doi.org/10.1088/1361-6560/abb5c3   Google Scholar

Download


Published
2023-06-30

Cited by

Maciura, Łukasz, Wójcik, D., Rymarczyk, T., & Król, K. (2023). NOVEL HYBRID ALGORITHM USING CONVOLUTIONAL AUTOENCODER WITH SVM FOR ELECTRICAL IMPEDANCE TOMOGRAPHY AND ULTRASOUND COMPUTED TOMOGRAPHY. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 13(2), 4–9. https://doi.org/10.35784/iapgos.3377

Authors

Łukasz Maciura 
lukasz.maciura@netrix.com.pl
Research and Development Center, Netrix S.A,. Lublin, Poland Poland
http://orcid.org/0000-0001-8657-3472

Authors

Dariusz Wójcik 

Research and Development Center, Netrix S.A,. Lublin, Poland Poland
http://orcid.org/0000-0002-4200-3432

Authors

Tomasz Rymarczyk 

Research and Development Center, Netrix S.A,. Lublin, Poland Poland
http://orcid.org/0000-0002-3524-9151

Authors

Krzysztof Król 

Research and Development Center, Netrix S.A,. Lublin, Poland Poland
http://orcid.org/0000-0002-0114-2794

Statistics

Abstract views: 220
PDF downloads: 247


Most read articles by the same author(s)

1 2 3 4 > >>