ENHANCEMENT OF ARTIFICIAL IMMUNE SYSTEMS FOR THE TRAVELING SALESMAN PROBLEM THROUGH HYBRIDIZATION WITH NEIGHBORHOOD IMPROVEMENT AND PARAMETER FINE-TUNING
Article Sidebar
Open full text
Issue Vol. 20 No. 4 (2024)
-
STUDY ON DEEP LEARNING MODELS FOR THE CLASSIFICATION OF VR SICKNESS LEVELS
Haechan NA, Yoon Sang KIM1-13
-
ENHANCING TOMATO LEAF DISEASE DETECTION THROUGH MULTIMODAL FEATURE FUSION
Puja SARAF, Jayantrao PATIL, Rajnikant WAGH14-38
-
NOVEL MULTI-MODAL OBSTRUCTION MODULE FOR DIABETES MELLITUS CLASSIFICATION USING EXPLAINABLE MACHINE LEARNING
Reehana SHAIK, Ibrahim SIDDIQUE39-62
-
COMPUTATIONAL SYSTEM FOR EVALUATING HUMAN PERCEPTION IN VIDEO STEGANOGRAPHY
Marcin PERY, Robert WASZKOWSKI63-76
-
PUPIL DIAMETER AND MACHINE LEARNING FOR DEPRESSION DETECTION: A COMPARATIVE STUDY WITH DEEP LEARNING MODELS
Islam MOHAMED, Mohamed EL-WAKAD, Khaled ABBAS, Mohamed ABOAMER, Nader A. Rahman MOHAMED77-99
-
CLASSIFICATION AND PREDICTION OF BENTHIC HABITAT FROM SCIENTIFIC ECHOSOUNDER DATA: APPLICATION OF MACHINE LEARNING ALGORITHMS
Baigo HAMUNA, Sri PUJIYATI, Jonson Lumban GAOL, Totok HESTIRIANOTO100-116
-
ENHANCEMENT OF ARTIFICIAL IMMUNE SYSTEMS FOR THE TRAVELING SALESMAN PROBLEM THROUGH HYBRIDIZATION WITH NEIGHBORHOOD IMPROVEMENT AND PARAMETER FINE-TUNING
Peeraya THAPATSUWAN, Warattapop THAPATSUWAN, Chaichana KULWORATIT117-137
-
EVALUATING LARGE LANGUAGE MODELS FOR MEDICAL INFORMATION EXTRACTION: A COMPARATIVE STUDY OF ZERO-SHOT AND SCHEMA-BASED METHODS
Zakaria KADDARI, Ikram El HACHMI, Jamal BERRICH, Rim AMRANI, Toumi BOUCHENTOUF138-148
-
EXPLORING THE EXPEDIENCY OF BLOCKCHAIN-BASED SOLUTIONS: REVIEW AND CHALLENGES
Francisco Javier MORENO ARBOLEDA, Georgia GARANI, Sergio Andrés ARBOLEDA ZULUAGA149-174
-
FEASIBILITY OF USING LOW-PARAMETER LOCAL LLMS IN ANSWERING QUESTIONS FROM ENTERPRISE KNOWLEDGE BASE
Marcin BADUROWICZ, Stanisław SKULIMOWSKI, Maciej LASKOWSKI175-191
-
SHARPNESS IMPROVEMENT OF MAGNETIC RESONANCE IMAGES USING A GUIDED-SUBSUMED UNSHARP MASK FILTER
Manar AL-ABAJI, Zohair AL-AMEEN192-210
-
FUZZY REGION MERGING WITH HIERARCHICAL CLUSTERING TO FIND OPTIMAL INITIALIZATION OF FUZZY REGION IN IMAGE SEGMENTATION
Wawan GUNAWAN211-220
Archives
-
Vol. 21 No. 3
2025-10-05 12
-
Vol. 21 No. 2
2025-06-27 12
-
Vol. 21 No. 1
2025-03-31 12
-
Vol. 20 No. 4
2025-01-31 12
-
Vol. 20 No. 3
2024-09-30 12
-
Vol. 20 No. 2
2024-08-14 12
-
Vol. 20 No. 1
2024-03-30 12
-
Vol. 19 No. 4
2023-12-31 10
-
Vol. 19 No. 3
2023-09-30 10
-
Vol. 19 No. 2
2023-06-30 10
-
Vol. 19 No. 1
2023-03-31 10
-
Vol. 18 No. 4
2022-12-30 8
-
Vol. 18 No. 3
2022-09-30 8
-
Vol. 18 No. 2
2022-06-30 8
-
Vol. 18 No. 1
2022-03-30 7
-
Vol. 16 No. 4
2020-12-30 8
-
Vol. 16 No. 3
2020-09-30 8
-
Vol. 16 No. 2
2020-06-30 8
-
Vol. 16 No. 1
2020-03-30 8
Main Article Content
DOI
Authors
Abstract
This research investigates the enhancement of Artificial Immune Systems (AIS) for solving the Traveling Salesman Problem (TSP) through hybridization with Neighborhood Improvement (NI) and parameter fine-tuning. Two main experiments were conducted: Experiment A identified the optimal integration points for NI within AIS, revealing that position 2 (AIS+NIpos2) improved solution quality by an average of 27.78% compared to other positions. Experiment B benchmarked AIS performance with various enhancement techniques. Using symmetric and asymmetric TSP datasets, the results showed that integrating NI at strategic points and fine-tuning parameters boosted AIS performance by up to 46.27% in some cases. The hybrid and fine-tuned version of AIS (AIS-th) consistently provided the best solution quality, with up to a 50.36% improvement, though it required more computational time. These findings emphasize the importance of strategic combinations and fine-tuning for creating effective optimization algorithms.
Keywords:
References
Adenso-Díaz, B., & Laguna, M. (2006). Fine-Tuning of algorithms using fractional experimental designs and local search. Operations Research, 54(1), 99-114. https://doi.org/10.1287/opre.1050.0243 DOI: https://doi.org/10.1287/opre.1050.0243
Akhand, M. A. H., Akter, S., & Rashid, M. A. (2014). Velocity Tentative Particle Swarm Optimization to solve TSP. 2013 International Conference on Electrical Information and Communication Technology (EICT) (pp. 1-6). IEEE. https://doi.org/10.1109/EICT.2014.6777868 DOI: https://doi.org/10.1109/EICT.2014.6777868
Akram, M., & Habib, A. (2023). Hybridizing simulated annealing and genetic algorithms with Pythagorean fuzzy uncertainty for Traveling Salesman Problem optimization. Journal of Applied Mathematics and Computing, 69, 4451-4497. https://doi.org/10.1007/s12190-023-01935-y DOI: https://doi.org/10.1007/s12190-023-01935-y
Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Computing Surveys, 35(3), 268-308. https://doi.org/10.1145/937503.937505 DOI: https://doi.org/10.1145/937503.937505
Boryczka, U., & Szwarc, K. (2019). The Harmony Search algorithm with additional improvement of harmony memory for Asymmetric Traveling Salesman Problem. Expert Systems with Applications, 122, 43-53. https://doi.org/10.1016/j.eswa.2018.12.044 DOI: https://doi.org/10.1016/j.eswa.2018.12.044
Braun, H. (1991). On solving travelling salesman problems by genetic algorithms. In H.-P. Schwefel & R. Männer (Eds.), Parallel Problem Solving from Nature (Vol. 496, pp. 129-133). Springer-Verlag. https://doi.org/10.1007/BFb0029743 DOI: https://doi.org/10.1007/BFb0029743
Burke, E. K., Cowling, P. I., & Keuthen, R. (2001). Effective local and guided variable neighbourhood search methods for the asymmetric travelling salesman problem. In E. J. W. Boers (Ed.), Applications of Evolutionary Computing (Vol. 2037, pp. 203-212). Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-45365-2_21 DOI: https://doi.org/10.1007/3-540-45365-2_21
Burnet, F. M. (1959). The clonal selection theory of acquired immunity; the Abraham Flexner lectures of Vanderbilt University. Cambridge University Press. DOI: https://doi.org/10.5962/bhl.title.8281
Campuzano, G., Obreque, C., & Aguayo, M. M. (2020). Accelerating the Miller–Tucker–Zemlin model for the asymmetric Traveling Salesman Problem. Expert Systems with Applications, 148, 113229. https://doi.org/10.1016/j.eswa.2020.113229 DOI: https://doi.org/10.1016/j.eswa.2020.113229
Chandrasekaran, M., Asokan, P., Kumanan, S., Balamurugan, T., & Nickolas, S. (2006). Solving job shop scheduling problems using artificial immune system. International Journal of Advanced Manufacturing Technology, 31, 580-593. https://doi.org/10.1007/s00170-005-0226-3 DOI: https://doi.org/10.1007/s00170-005-0226-3
Chen, S.-M., & Chien, C.-Y. (2011). Solving the Traveling Salesman Problem based on the genetic simulated annealing ant colony system with particle swarm optimization techniques. Expert Systems with Applications, 38(12), 14439-14450. https://doi.org/10.1016/j.eswa.2011.04.163 DOI: https://doi.org/10.1016/j.eswa.2011.04.163
De Castro, L., & Timmis, J. (2002). Artificial immune systems: A new computational intelligence approach. Springer.
De Castro, L., & Von Zuben, F. (2001). The clonal selection algorithm with engineering applications. Workshop Proceedings of GECCO (pp. 36-37).
Deng, W., Chen, R., He, B., Liu, Y., Yin, L., & Guo, J. (2012). A novel two-stage hybrid swarm intelligence optimization algorithm and application. Soft Computing, 16, 1707-1722. https://doi.org/10.1007/s00500-012-0855-z DOI: https://doi.org/10.1007/s00500-012-0855-z
Desrochers, M., & Laporte, G. (1991). Improvements and extensions to the Miller-Tucker-Zemlin subtour elimination constraints. Operations Research Letters, 10(1), 27-36. https://doi.org/10.1016/0167-6377(91)90083-2 DOI: https://doi.org/10.1016/0167-6377(91)90083-2
Dorigo, M., & Gambardella, L. M. (1997). Ant colonies for the travelling salesman problem. Biosystems, 43(2), 73-81. https://doi.org/10.1016/S0303-2647(97)01708-5 DOI: https://doi.org/10.1016/S0303-2647(97)01708-5
Dorigo, M., & Stützle, T. (2004). Ant Colony Optimization. MIT Press. DOI: https://doi.org/10.7551/mitpress/1290.001.0001
Eiben, A. E., & Smit, S. K. (2011). Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm and Evolutionary Computation, 1(1), 19-31. https://doi.org/10.1016/j.swevo.2011.02.001 DOI: https://doi.org/10.1016/j.swevo.2011.02.001
Engin, O., & Döyen, A. (2004). Artificial immune systems and applications in industrial problems. Journal of Science, 17(1), 71-84.
Freitas, A. A., & Timmis, J. (2003). Revisiting the foundations of artificial immune systems: A problem-oriented perspective. In J. Timmis, P. J. Bentley, & E. Hart (Eds.), Artificial Immune Systems (Vol. 2787, pp. 229-241). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-45192-1_22 DOI: https://doi.org/10.1007/978-3-540-45192-1_22
Garrett, S. M. (2005). How do we evaluate artificial immune systems? Evolutionary Computation, 13(2), 145-177. https://doi.org/10.1162/1063656054088512 DOI: https://doi.org/10.1162/1063656054088512
Glover, F. W. (1989). Tabu Search - Part I. ORSA Journal on Computing, 1(3), 190-206. https://doi.org/10.1287/ijoc.1.3.190 DOI: https://doi.org/10.1287/ijoc.1.3.190
Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Publishing Co., Inc.
Gouveia, L., & Pires, J. M. (1999). The asymmetric travelling salesman problem and a reformulation of the Miller-Tucker-Zemlin constraints. European Journal of Operational Research, 112(1), 134-146. https://doi.org/10.1016/S0377-2217(97)00358-5 DOI: https://doi.org/10.1016/S0377-2217(97)00358-5
Greensmith, J., Whitbrook, A., & Aickelin, U. (2010). Artificial immune systems. In M. Gendreau & J.-Y. Potvin (Eds.), Handbook of Metaheuristics (Vol. 146, pp. 421–448). Springer US. https://doi.org/10.1007/978-1-4419-1665-5_14 DOI: https://doi.org/10.1007/978-1-4419-1665-5_14
Hart, E., & Timmis, J. (2008). Application areas of AIS: The past, the present and the future. Applied Soft Computing, 8(1), 191-201. https://doi.org/10.1016/j.asoc.2006.12.004 DOI: https://doi.org/10.1016/j.asoc.2006.12.004
Huang, C., Li, Y., & Yao, X. (2019). A survey of automatic parameter tuning methods for metaheuristics. IEEE Transactions on Evolutionary Computation, 24(2), 201-216. https://doi.org/10.1109/TEVC.2019.2921598 DOI: https://doi.org/10.1109/TEVC.2019.2921598
Joy, G., Huyck, C., & Yang, X.-S. (2023). Review of parameter tuning methods for nature-inspired algorithms. In X.-S. Yang (Ed.), Benchmarks and Hybrid Algorithms in Optimization and Applications (pp. 33–47). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-3970-1_3 DOI: https://doi.org/10.1007/978-981-99-3970-1_3
Kang-Ping, W., Lan, H., Chun-Guang, Z., & Wei, P. (2003). Particle swarm optimization for Traveling Salesman Problem. 2003 International Conference on Machine Learning and Cybernetics (pp. 1583-1585). IEEE. https://doi.org/10.1109/ICMLC.2003.1259748 DOI: https://doi.org/10.1109/ICMLC.2003.1259748
Karaboga, D., & Gorkemli, B. (2011). A combinatorial Artificial Bee Colony algorithm for Traveling Salesman Problem. 2011 International Symposium on Innovations in Intelligent Systems and Applications (pp. 50-53). IEEE. https://doi.org/10.1109/INISTA.2011.5946125 DOI: https://doi.org/10.1109/INISTA.2011.5946125
Eberhart, R. C., Shi, Y., & Kennedy, J. (2001). Swarm intelligence. Morgan Kaufmann Publishers Inc.
Khan, I., & Maiti, M. K. (2019). A swap sequence based Artificial Bee Colony algorithm for Traveling Salesman Problem. Swarm and Evolutionary Computation, 44, 428-438. https://doi.org/10.1016/j.swevo.2018.05.006 DOI: https://doi.org/10.1016/j.swevo.2018.05.006
Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science, 220(4598), 671-680. https://doi.org/10.1126/science.220.4598.671 DOI: https://doi.org/10.1126/science.220.4598.671
Krishna, M., Panda, N., & Majhi, S. (2021). Solving Traveling Salesman Problem using Hybridization of Rider Optimization and Spotted Hyena Optimization Algorithm. Expert Systems with Applications, 183, 115353. https://doi.org/10.1016/j.eswa.2021.115353 DOI: https://doi.org/10.1016/j.eswa.2021.115353
Laporte, G. (1992). The Traveling Salesman Problem: An overview of exact and approximate algorithms. European Journal of Operational Research, 59(2), 231-247. https://doi.org/10.1016/0377-2217(92)90138-Y DOI: https://doi.org/10.1016/0377-2217(92)90138-Y
Laporte, G., & Nobert, Y. (1980). A Cutting Planes Algorithm for the m-Salesmen Problem. The Journal of the Operational Research Society, 31(11), 1017-1023. https://doi.org/10.2307/2581282 DOI: https://doi.org/10.1057/jors.1980.188
Larrañaga, P., Kuijpers, C. M. H., Murga, R. H., Inza, I., & Dizdarevic, S. (1999). Genetic algorithms for the Travelling Salesman Problem: A Review of representations and operators. Artificial Intelligence Review, 13, 129-170. https://doi.org/10.1023/A:1006529012972 DOI: https://doi.org/10.1023/A:1006529012972
Lawler, E. L. (1985). The Travelling Salesman Problem: A Guided Tour of Combinatorial Optimization. John Wiley & Sons.
Li, M., Ma, J., Zhang, Y., Zhou, H., & Liu, J. (2015). Firefly algorithm solving multiple Traveling Salesman Problem. Journal of Computational and Theoretical Nanoscience, 12(7), 1277-1281. https://doi.org/10.1166/jctn.2015.3886 DOI: https://doi.org/10.1166/jctn.2015.3886
Miller, C. E., Tucker, A. W., & Zemlin, R. A. (1960). Integer programming formulation of Traveling Salesman Problems. Journal of the ACM, 7(4), 326-329. https://doi.org/10.1145/321043.321046 DOI: https://doi.org/10.1145/321043.321046
Nagata, Y., & Soler, D. (2012). A new genetic algorithm for the asymmetric Traveling Salesman Problem. Expert Systems with Applications, 39(10), 8947-8953. https://doi.org/10.1016/j.eswa.2012.02.029 DOI: https://doi.org/10.1016/j.eswa.2012.02.029
Osaba, E., Ser, J. D., Sadollah, A., Bilbao, M. N., & Camacho, D. (2018). A discrete water cycle algorithm for solving the symmetric and asymmetric Traveling Salesman Problem. Applied Soft Computing, 71, 277-290. https://doi.org/10.1016/j.asoc.2018.06.047 DOI: https://doi.org/10.1016/j.asoc.2018.06.047
Osaba, E., Yang, X.-S., Diaz, F., Lopez-Garcia, P., & Carballedo, R. (2016). An improved discrete bat algorithm for symmetric and asymmetric Traveling Salesman Problems. Engineering Applications of Artificial Intelligence, 48, 59-71. https://doi.org/10.1016/j.engappai.2015.10.006 DOI: https://doi.org/10.1016/j.engappai.2015.10.006
Panwar, K., & Deep, K. (2021). Discrete Grey Wolf Optimizer for symmetric Traveling Salesman Problem. Applied Soft Computing, 105, 107298. https://doi.org/10.1016/j.asoc.2021.107298 DOI: https://doi.org/10.1016/j.asoc.2021.107298
Reinelt, G. (1991). TSPLIB - A Traveling Salesman Problem Library. ORSA Journal on Computing, 3(4), 267-384. https://doi.org/10.1287/ijoc.3.4.376 DOI: https://doi.org/10.1287/ijoc.3.4.376
Ruan, D. (1997). Intelligent hybrid systems : fuzzy logic, neural networks, and genetic algorithms. Springer.
Sengupta, S., Basak, S., & Peters, R. A. (2019). Particle swarm optimization: A survey of historical and recent developments with hybridization perspectives. Machine Learning and Knowledge Extraction, 1(1), 157-191. https://doi.org/10.3390/make1010010 DOI: https://doi.org/10.3390/make1010010
Yang, X.-S. (2023). Nature-Inspired algorithms in optimization: Introduction, hybridization, and insights. In X.-S. Yang (Ed.), Benchmarks and Hybrid Algorithms in Optimization and Applications (pp. 1–17). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-3970-1_1 DOI: https://doi.org/10.1007/978-981-99-3970-1_1
Zhang, T., Zhou, Y., Zhou, G., Deng, W., & Luo, Q. (2023). Discrete Mayfly Algorithm for spherical asymmetric Traveling Salesman Problem. Expert Systems with Applications, 221, 119765. https://doi.org/10.1016/j.eswa.2023.119765 DOI: https://doi.org/10.1016/j.eswa.2023.119765
Article Details
Abstract views: 442
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Applied Computer Science are open-access and distributed under the terms of the Creative Commons Attribution 4.0 International License.
