CHROMATIC DISPERSION COMPENSATION IN EXISTING FIBER OPTIC TELECOMMUNICATION LINES WITH THE GROWING BIT RATES NEEDS OF DWDM SYSTEM
Abstract
The article presents an analysis of the methods of chromatic dispersion compensation in the existing, already built fiber optic telecommunications lines, based on ITU G.652 A and B fibers with the constantly growing demand for bit rates in DWDM systems. Due to the enormous investment costs, it is impossible to replace the cables used with NZDSF, hence the chapter analyzes methods of improving the bandwidth without replacing all cables. Typical models of the optimization of chromatic dispersion in the existing lines are presented.
Keywords:
chromatic dispersion, optical fiber dispersion, compensation, DWDMReferences
Andreev V. et al.: Chromatic dispersion monitoring based on Bragg notch filter central frequency polyharmonic probing. Proc. SPIE 11146, 2019, 111461M, 7–9.
DOI: https://doi.org/10.1117/12.2527565
Google Scholar
Bo L. et al.: Optical frequency comb generation for DWDM transmission over 25- to 50-km standard single-mode fiber. Optical Engineering 57(1), 2018, 1–12.
DOI: https://doi.org/10.1117/1.OE.57.1.010501
Google Scholar
Bobruk T., Wójcik W., Smolarz A.: Dispersion and its compensation in telecommunication optical fibers. Proc. SPIE 6608, 2007, 660814.
DOI: https://doi.org/10.1117/12.739597
Google Scholar
Chorchos Ł., Turkiewicz J.: SSMF 1310 nm dispersion characteristic influence on the 400 Gbit/s and 1000 Gbit/s ethernet physical layer design, Proc. SPIE 10445, 2017, 104450E.
DOI: https://doi.org/10.1117/12.2280839
Google Scholar
Drabik Z.: Procedura wyznaczania niepewności pomiaru dyspersji chromatycznej Laboratorium Badawczego OTO. OTO Lublin, Lublin 2000.
Google Scholar
Drabik Z., Koper Z.: Wyzwania dla sieci optycznej TPSA stawiane przez technikę transmisji 10Gbit/s. Researchgate 2003.
Google Scholar
Fischer G. et al.: Automatic polarization mode dispersion compensation in 40 Gb/s optical transmission system. Ei.Uni-Paderborn, August 2016, 1–5.
Google Scholar
Hayami S., Mukasa K., Sugizaki R.: Dispersion-Managed Transmission Lines with Reverse-Dispersion Fiber. Furukawa Review 19, 2000, 6–8.
Google Scholar
Huang Y., Yang H., Mao Y.: Design of linear photonic crystal fiber with all-positive/negative ultraflattened chromatic dispersion for the whole telecom band. Optical Engineering 60(7), 2021, 1–3.
DOI: https://doi.org/10.1117/1.OE.60.7.076110
Google Scholar
Kowalski A.: Modern optical networks and systems. Proc. SPIE 6608, 2007, 660811.
DOI: https://doi.org/10.1117/12.739594
Google Scholar
Matsiu T., Nakajima K., Sankawa I.: Dispersion Compenastion Over All the Telecomunication Bands With Double–Cladding Photonic-Crystal Fiber. Lightwave Technology 25(3), 2007, 1–5.
DOI: https://doi.org/10.1109/JLT.2006.889668
Google Scholar
Nguyen H. et al.: Ultra-flattened chromatic dispersion in all-solid hybrid micro-structured optical fibers for mid-infrared lightwave generation. Proc. SPIE 10902, 2019, 109021Q.
Google Scholar
Perlicki K.: Systemy Transmisji Optycznej WDM. WKŁ, Warszawa 2007.
Google Scholar
Song P., Wang J., Zhou C.: High birefringence and near-zero dispersion photonic crystal fiber at the wavelength of 1.55 μm. Proc. SPIE 10255, 2017, 102553O.
DOI: https://doi.org/10.1117/12.2267700
Google Scholar
Szymańska A.: Łącza światłowodowe – budżet mocy. Politechnika Warszawska, Ośrodek Kształcenia na Odległość OKNO, Warszawa 2018.
Google Scholar
http://www.teraxion.com (available 1.10.2021).
Google Scholar
Authors
Tomasz Bobruktomaszbobruk@gmail.com
Cellnex Telecom Poland
https://orcid.org/0000-0001-8265-9228
Statistics
Abstract views: 312PDF downloads: 237
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.