Use of basalt powder in a cementitious mortar and concrete as a substitute of sand
Article Sidebar
Open full text
Issue Vol. 15 No. 4 (2016)
-
Influence of modeling of low-water bridge spans on the maximum value of stress in the main girders
Artur Duchaczek005-015
-
Cyclists as the element that creates the city
Katarzyna Szmygin017-022
-
Wooden construction in sacral architecture in the past and today
Wojciech Mielnik023-031
-
Selection of subcontractors using ordinal ranking methods based on Condorcet approach
Sławomir Biruk, Piotr Jaśkowski033-040
-
Agrorecreational ecoparks in the quarries territory as a new type of urban production (on the example of Kryvbas)
Taras Rudenko, Tetiana Mukha, Mariia Rudenko041-051
-
Fire analysis of structures in terms of physical phenomena observed during uniaxial tensile tests of steel
Wojciech Skowroński063-074
-
Use of basalt powder in a cementitious mortar and concrete as a substitute of sand
Magdalena Dobiszewska075-085
-
The quality and conditions of life in Siechnice – social research
Milena Stettner087-100
-
The rating of reduce the loss of heat energy in multi-family building as a result of the thermomodernization
Monika Jarosz-Hadam, Stanisław Fic101-108
-
The studies of the dynamic and material parameters of reinforced concrete elements with the addition of zeolite tuffs and plasticizer
Jacek Szulej109-116
-
Regeneration of pavement with modifiers based on ecological materials
Michał Babiak; Maria Ratajczak; Jacek Kosno117-126
-
Interpretation of the welding incompatibility in the T-joint with backing strip during ultrasonic test
Marcin Górecki, Michał Jordan127-137
-
Detection of ventilation paths using morphometric method in the selected part of Lodz
Anna Bochenek, Katarzyna Klemm139-151
-
An attempt to use Discrete Element Method in solid mechanics
Tomasz Nowicki153-162
-
Comparative analysis of survey on humidity carried out by chemical way in proportion to gravimetric survey on selected building materials
Maciej Trochonowicz, Bartosz Szostak, Daniel Lisiecki163-171
-
Protecting of spatial and cultural value of Downtown Lublin, by maintenance of modernist edifice of the Universal Department Store in Lublin
Karol Krupa, Maciej Trochonowicz173-181
-
The analysis of consistency evaluation of the loess in Lublin based on CPT tests
Krzysztof Nepelski, Agnieszka Lal, Małgorzata Franus183-194
-
Analysis of cantilever composite beam work with regards to the different thickness and location of adhesive joint made of elastic-ideally plastic material
Bartosz Kawecki, Jerzy Podgórski195-208
-
An analysis of the impact strength of concrete components as a factor influencing the bond strength in unreinforced composite concrete elements
Dominika Franczak-Balmas053-061
Archives
-
Vol. 17 No. 4
2019-10-10 16
-
Vol. 17 No. 3
2019-10-10 15
-
Vol. 17 No. 2
2019-10-10 16
-
Vol. 17 No. 1
2019-10-10 21
-
Vol. 16 No. 4
2019-10-14 14
-
Vol. 16 No. 3
2019-10-14 15
-
Vol. 16 No. 2
2019-10-14 12
-
Vol. 16 No. 1
2019-10-15 20
-
Vol. 15 No. 4
2019-10-17 19
-
Vol. 15 No. 3
2019-10-15 13
-
Vol. 15 No. 2
2019-10-16 14
-
Vol. 15 No. 1
2019-10-09 28
-
Vol. 14 No. 4
2020-04-07 19
-
Vol. 14 No. 3
2020-04-15 25
-
Vol. 14 No. 2
2020-04-20 15
-
Vol. 14 No. 1
2020-04-25 14
-
Vol. 13 No. 4
2020-06-24 48
-
Vol. 13 No. 3
2020-06-24 43
-
Vol. 13 No. 2
2020-07-15 43
-
Vol. 13 No. 1
2020-07-15 30
Main Article Content
DOI
Authors
magdalena.dobiszewska@utp.edu.pl
Abstract
The present study shows the results of the possibility of using basalt powderin cementitious mortar and concrete. Asphalt mixture production leads to formation of significant amounts of mineral powder. It is used in a present research. Utilization of this waste is a problem in Asphalt Batch Mix Plant. Experiments were carried out to determine an influence of powder basalt on some properties of cementitious mortar. The compressive and flexural strength at 2, 28 and 56 days of curing, freeze resistance, absorptivity, capillary rise of water and softening factor were conducted. Thermal conductivity factor was determined by means of Thermal Conductivity Measuring Instrument TCA 300 to assess a thermal insulation parameters of mortars. Secondly, experiments were also carried out to determine an influence of addition of powder basalt on some properties of concrete. The compressive strength at 28, 90, 180 days of curing and freeze resistance were conducted. Cementitious mortars and concrete were prepared with powder basalt as a partial substitute of sand in amount of 0-30% and 0-20% sand mass respectively. The results show that powder basalt can be use as an effective substitute of fine \ aggregate in cementitious mortar and concrete. Use of the powder basalt as a partial substitution of sand improves some properties of cementitious mortar and concrete and anable for the management of industrial waste.
Keywords:
References
[2] Rashad A. Cementitious materials and agricultural wastes as natural fine aggregate replacement in conventional mortar and concrete. Journal of Building Engineering 5 (2016) 119-141.
[3] Neeraj J. Effect of nonpozzolanic and pozzolanic mineral admixtures on the hydration behavior of ordinary Portland cement. Construction and Building Materials 27 (2012) 39-44.
[4] Alyamac K.E., Aydin A.B. Concrete properties containing fine aggregate marble powder. KSCE Journal of Civil Engineering 19(7) (2015) 2208-2216.
[5] Almeida N., Branco F., de Brito J., Santos J.R. High-performance concrete with recycled stone slurry. Cement and Concrete Research 37 (2007) 210-220.
[6] Dhanalaxmi C., Nirmalkumar D.K. Study on the properties of concrete with various mineral admixtures – limestone powder and marble powder (Reviev Paper). International Journal of Innovative Research in Science, Engineering and Technology 4(1) (2015) 18511-18515.
[7] Bonavetti V.L., Irassar E.F. The effect of stone dust content in sand. Cement and Concrete Research 24(3) (1994) 580-590.
[8] Rahhal V., Bonavetti V., Trusilewicz L., Pedrajas C., Talero R. Role of the filler on Portland cement hydration at early ages. Construcuction and Building Materials 27 (2012) 82 90.
[9] Laibao L., Yunsheng Z., Wenkua Z., Zhiyong L., Lihua Z. Investigating the influence of basalt as mineral admixture on hydration and microstructure formation mechanism of cement. Construction and Building Materials 48 (2013) 434-440.
[10] Soroka I., Setter N. The effect of fillers on strength of cement mortar. Cement and Concrete Research 7 (1977) 449-456.
[11] Uncik S., Kmecova V. The effect of basalt powder on the properties of cement composites. Concrete and Concrete Structures Conference Procedia Engineering 65 (2013) 51 56.
[12] Kmecova V., Stefunkova Z. Effect of basalt powder on workability and initial strength of cement mortar. Journal of Civil Engineering and Architectural Research 1(4) (2014) 260-267.
[13] Saraya M.E.I. Study physico-chemical properties of blended cements containing fixe amount of silica fume, blast furnace slag, basalt and limestone, a comparative study. Construction and Building Materials 72 (2014) 104-112.
[14] Binici H. Effect of crushed ceramic and basaltic pumice as fine aggregates on concrete mortars properties. Construction and Building Materials 21 (2007) 1191-1197.
[15] Dobiszewska M., Franus W., Turbiak S. Analiza możliwości zastosowania odpadowego pyłu bazaltowego w zaprawie cementowej. Czasopismo Inżynierii Lądowej, Środowiska i Architektury Journal of Civil Engineering, Environment and Architecture JCEEA t. XXXIII z. 63 (nr 1/I/2016) 107-114.
[16] Dobiszewska M., Kuziak J., Woyciechowski P., Kępniak M. Główne aspekty trwałości betonu modyfikowanego odpadowym pyłem bazaltowym z odpylania kruszyw w wytwórni MMA. Czasopismo Inżynierii Lądowej, Środowiska i Architektury Journal of Civil Engineering, Environment and Architecture JCEEA t. XXXIII z. 63 (nr 1/I/2016) 115-122.
[17] Arivumangai A., Felixkala T. Strength and durability properties of granite powder concrete. Journal of Civil Engineering Research 4(2A) (2014) 1-6.
[18] Celik T., Marar K. Effects of crushed stone dust on some properties of concrete. Cement and Concrete Research 26(7) (1996) 1121-1130.
[19] Uchikawa H., Hanehara S., Hirao H. Influence of microstructure of the physical properties of concrete prepared by substituting mineral powder for part of fine aggregate. Cement and Concrete Research 26(1) (1996) 101-111.
[20] Heikal M., El-Didamony H., Morsy M.S. Limestone-filled pozzolanic cement. Cement and Concrete Research 30 (2000) 1827-1834.
Article Details
Abstract views: 550
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Budownictwo i Architektura supports the open science program. The journal enables Open Access to their publications. Everyone can view, download and forward articles, provided that the terms of the license are respected.
Publishing of articles is possible after submitting a signed statement on the transfer of a license to the Journal.
