Publikowanie artykułów jest możliwe po podpisaniu zgody na przeniesienie licencji na czasopismo.
Open full text
The investigation focuses on improving the mechanical properties of concrete by optimising its structural organisation through external activation using a modified electromagnetic field and internal activation with carefully selected fillers. The effectiveness of activating cement composites with fractal-matrix resonators has been demonstrated. The research examines the impact of both external and internal activation on structural changes, mechanical property indices, and the damage resistance of cement composites and concretes. It has been shown that comprehensive activation enables the control of binder setting time and concrete elasticity modulus while reducing the initial volumetric deformations of hardening systems. Additionally, it enhances crack resistance and increases concrete strength. Activation reduces initial volumetric deformations and thermal changes during hardening by 1.5-2 times, shortens the setting time by 30-90 minutes without affecting the final setting time, decreases specimen damage by up to 20%, and improves compressive strength by up to 20%. Furthermore, activation allows for precise regulation of the initial setting time within a range of 15 to 210 minutes and reduces the final setting time by 15 to 90 minutes, lowering damage from technological defects by up to 10% and increasing flexural strength by up to 40%. The increase in crack resistance and concrete strength is achieved through the internal and external introduction of optimal fillers, carefully selected based on their specific surface area and quantity, along with the application of fractal-matrix resonators.
[1] D'aloia L., Chanvillard G. “Determining the “apparent” activation energy of concrete: Ea – numerical simulations of the heat of hydration of cement”, Cement and Concrete Research, vol. 32, no. 8, (2002), 1277-1289. https://doi.org/10.1016/S0008-8846(02)00791-3 DOI: https://doi.org/10.1016/S0008-8846(02)00791-3
[2] Poole J. L., Riding K. A., Folliard K. J., Juenger M. C., Schindler A. K. “Methods for calculating activation energy for Portland cement”, ACI Materials Journal, vol. 104, no. 1, (2007), 303-311. https://krex.k-state.edu/handle/2097/4495 DOI: https://doi.org/10.14359/18499
[3] Paruta V., Gnyp O., Lavrenyuk L., Grynyova I. “The influence of the structure on the destruction mechanism of polymer-cement plaster coating”, Key Engineering Materials, vol 864, (2020), 93-100. https://doi.org/10.4028/www.scientific.net/KEM.864.93 DOI: https://doi.org/10.4028/www.scientific.net/KEM.864.93
[4] Vyrovoy V. M., Korobko O. O., Sukhanov V. G., Posternak O. O. “Concrete as a self-organizing system”, Materials Science and Engineering, vol. 708, no. 1, (2019), 012115. https://doi.org/10.1088/1757-899X/708/1/012115 DOI: https://doi.org/10.1088/1757-899X/708/1/012115
[5] Krivenko P., Petropavlovskyi O., Kovalchuk O. ”A comparative study on the influence of metakaolin and kaolin additives on properties and structure of the alkali-activated slag cement and concrete”, Eastern-European Journal of Enterprise Technologies, vol. 1, no. 6, (2018), 33-39. https://doi.org/10.15587/1729-4061.2018.119624 DOI: https://doi.org/10.15587/1729-4061.2018.119624
[6] Lobodanov M., Blikharskyy Z., Vegera P., Shnal T., Karpushyn,A. “Bearing capacity of reinforced concrete beams with damages in the compressed area obtained before the workload of 50–70%”, Lecture Notes in Civil Engineering, vol. 290, (2022), 245-252. https://doi.org/10.1007/978-3-031-14141-6_24 DOI: https://doi.org/10.1007/978-3-031-14141-6_24
[7] Kos Z., Klymenko Y., Crnoja A., Grynyova I. “Calculation model for estimation of residual bearing capacity of damaged reinforced concrete slender columns”, Applied Sciences, vol. 12, no. 15, (2022), 7430. https://doi.org/10.3390/app12157430 DOI: https://doi.org/10.3390/app12157430
[8] Cardoza A., Colorado H. A. “Alkali-activated cement manufactured by the alkaline activation of demolition and construction waste using brick and concrete wastes”, Open Ceramics, vol. 16, (2023), 100438. https://doi.org/10.1016/j.oceram.2023.100438 DOI: https://doi.org/10.1016/j.oceram.2023.100438
[9] Williamson T., Juenger M. C. “The role of activating solution concentration on alkali–silica reaction in alkali-activated fly ash concrete”, Cement and Concrete Research, vol. 83, (2016), 124-130. https://doi.org/10.1016/j.cemconres.2016.02.008 DOI: https://doi.org/10.1016/j.cemconres.2016.02.008
[10] Fernandez-Jimenez A. M., Palomo A., Lopez-Hombrados C. “Engineering properties of alkali-activated fly ash concrete”, ACI Materials Journal, vol. 103, no. 2, (2006), 106. https://doi.org/10.14359/15261 DOI: https://doi.org/10.14359/15261
[11] Hefni Y., Abd El Zaher Y., Wahab M. A. “Influence of activation of fly ash on the mechanical properties of concrete”, Construction and Building Materials, vol. 172, (2018), 728-734. https://doi.org/10.1016/j.conbuildmat.2018.04.021 DOI: https://doi.org/10.1016/j.conbuildmat.2018.04.021
[12] Van Deventer J. S., Provis J. L., Duxson, P. “Technical and commercial progress in the adoption of geopolymer cement”, Minerals Engineering, vol. 29, (2012), 89-104. https://doi.org/10.1016/j.mineng.2011.09.009 DOI: https://doi.org/10.1016/j.mineng.2011.09.009
[13] Krivenko P., Petropavlovskii O., Vozniuk H., Lakusta S. “The development of alkali-activated cement mixtures for fast rehabilitation and strengthening of concrete structures”, Procedia Engineering, vol. 195, (2017), 142-146. https://doi.org/10.1016/j.proeng.2017.04.536 DOI: https://doi.org/10.1016/j.proeng.2017.04.536
[14] Klemczak B., Batog M., Giergiczny Z., Żmij A. “Complex effect of concrete composition on the thermo-mechanical behaviour of mass concrete”, Materials, vol. 11, no. 11, (2018), 2207. https://doi.org/10.3390/ma11112207 DOI: https://doi.org/10.3390/ma11112207
[15] Kroviakov S., Shestakova L. “Influence of basalt fiber and air-entraining admixture on the properties of rigid concrete pavement”, Revista Romana de Materiale, vol. 53, no. 2, (2023), 170-175. URL https://solacolu.chim.upb.ro/pg170-175.pdf
[16] Kroviakov S., Mishutin A., Pishev O. “Management of the properties of shipbuilding expanded clay lightweight concrete”, International Journal of Engineering & Technology, vol. 7, no. 3.2, (2018), 245-249. https://doi.org/10.14419/ijet.v7i3.2.14412 DOI: https://doi.org/10.14419/ijet.v7i3.2.14412
[17] Ksonshkevych L., Krantovska O., Petrov M., Synii S., Uhl A., “A. Investigation of the structure of cement stone, obtaining and optimization of high-strength concrete on mechanically activated binder”, MATEC Web of Conferences, vol. 230, (2018). 03010. https://doi.org/10.1051/matecconf/201823003010 DOI: https://doi.org/10.1051/matecconf/201823003010
[18] Wang S. D., Pu X. C., Scrivener K. L., Pratt P. L. “Alkali-activated slag cement and concrete: a review of properties and problems”, Advances in Cement Research, vol. 7, no. 27, (1995), 93-102. https://doi.org/10.1680/adcr.1995.7.27.93 DOI: https://doi.org/10.1680/adcr.1995.7.27.93
[19] Zhang M. H., Malhotra V. M. “Characteristics of a thermally activated alumino-silicate pozzolanic material and its use in concrete”, Cement and Concrete Research, vol. 25, no. 8, (1995), 1713-1725. https://doi.org/10.1016/0008-8846(95)00167-0 DOI: https://doi.org/10.1016/0008-8846(95)00167-0
[20] Puertas F., González-Fonteboa B., González-Taboada I., Alonso M. D. M., Torres-Carrasco M., Rojo G., Martínez-Abella F. “Alkali-activated slag concrete: Fresh and hardened behaviour”, Cement and concrete composites, vol. 85, (2018), 22-31. https://doi.org/10.1016/j.cemconcomp.2017.10.003 DOI: https://doi.org/10.1016/j.cemconcomp.2017.10.003
[21] Hajdú D., Dian E., Gméling K., Klinkby E., Cooper-Jensen C. P., Osán J., Zagyvai P. “Experimental study of concrete activation compared to MCNP simulations for safety of neutron sources”, Applied Radiation and Isotopes, vol. 171, (2021), 109644. https://doi.org/10.1016/j.apradiso.2021.109644 DOI: https://doi.org/10.1016/j.apradiso.2021.109644
[22] Kazmirchuk N., Korobko O., Semenova S., Rozhniuk O. “Role of activation in formation of polymer composite properties”, Key Engineering Materials, vol. 864, (2020), 191-197. https://doi.org/10.4028/www.scientific.net/KEM.864.191 DOI: https://doi.org/10.4028/www.scientific.net/KEM.864.191
Abstract views: 225

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa 4.0 Międzynarodowe.
Publikowanie artykułów jest możliwe po podpisaniu zgody na przeniesienie licencji na czasopismo.
