An overview of radiation exposure effects on concrete in nuclear power plants
Article Sidebar
Open full text
Main Article Content
DOI
Authors
Abstract
This review summarizes the effects of radiation exposure on the properties of concrete, with a focus on the impacts on compressive and tensile strength, elastic modulus, weight loss, and dimensional changes. Ionising radiation, including neutron exposure, can significantly alter the mechanical and physical properties of concrete used in nuclear energy facilities. Recent advancements in developing ultra-high-performance concrete (UHPC) and radiation shielding concrete with heavy natural aggregates offer promising alternatives for radiation shielding. AI-driven models can support this by predicting material performance under irradiation.
Keywords:
References
[1] Brandt A. M., “Beton jako materiał osłonowy w budownictwie związanym z energetyka jądrową”, in VII Konferencja Dni Betonu, 2012, pp. 255–277.
[2] Wang K., Ma L., Yang C., Bian Z., Zhang D., Cui S., Wang M., Chen Z., Li X., “Recent progress in gd-containing materials for neutron shielding applications: a review”, Materials, vol. 16(12), (2023), 4305 https://doi.org/10.3390/MA16124305 DOI: https://doi.org/10.3390/ma16124305
[3] Abuhoza A., Alhussain A., “Comparison study of reflected and transmitted thermal neutron flux in water and other moderators”, King Saud University, 2007.
[4] Piotrowski T., Gryziński M. A., “Ocena efektywności nowej generacji betonów osłonowych przed promieniowaniem jonizującym w oparciu o pomiary we wzorcowych polach promieniowania”, Journal of Civil Engineering, Environment and Architecture, vol. 33(63/I/1), (2016), 141–148. https://doi.org/10.7862/RB.2016.16 DOI: https://doi.org/10.7862/rb.2016.16
[5] Popa A., Pantazi D., Nistor C., “Radiation effects on the properties of concrete used in nuclear power plants”, Energy Environment Efficiency Resources Globalization, vol. 7(1), (2021), 133–150. https://doi.org/10.37410/EMERG.2021.1.11 DOI: https://doi.org/10.37410/EMERG.2021.1.11
[6] Graves H. et al., “Expanded material degradation assessment (EMDA), Vol. 4: Aging of concrete”, 2014. https://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr7153/index.html
[7] Bruck P. M. Esselman T. C., Elaidi B. M., Wall J. J., Wong E. L., “Structural assessment of radiation damage in light water power reactor concrete biological shield walls”, Nuclear Engineering and Design, vol. 350, (2019), 9–20. https://doi.org/10.1016/J.NUCENGDES.2019.04.027 DOI: https://doi.org/10.1016/j.nucengdes.2019.04.027
[8] Brandt A. M., “Trwałość betonu w obiektach energetyki jądrowej”, Materialy Budowlane, vol. 517(9), (2015), 28–28. https://doi.org/10.15199/33.2015.09.07 DOI: https://doi.org/10.15199/33.2015.09.07
[9] Booth P. N., Varma A. H., Sener K. C., Malushte S. R., “Flexural behavior and design of steel-plate composite (SC) walls for accident thermal loading”, Nuclear Engineering and Design, vol. 295, (2015), 817–828. https://doi.org/10.1016/J.NUCENGDES.2015.07.036 DOI: https://doi.org/10.1016/j.nucengdes.2015.07.036
[10] Hilsdorf H. K., Kropp J., Koch H. J., “The effects of nuclear radiation on the mechanical properties of concrete”, Special Publication, vol. 55, (1978), 223–254. https://doi.org/10.14359/6616
[11] Brandt A. M., Jóźwiak-Niedźwiedzka D., “The influence of ionizing radiation on microstructure and properties of concrete shields - A review”, Cement Wapno Beton, vol. 18(4), (2013), 1–22.
[12] Kharita M. H., Yousef S., AlNassar M., “The effect of the initial water to cement ratio on shielding properties of ordinary concrete”, Progress in Nuclear Energy, vol. 52(5), (2010), 491–493. https://doi.org/10.1016/J.PNUCENE.2009.11.005 DOI: https://doi.org/10.1016/j.pnucene.2009.11.005
[13] Field K. G., Remec I., Le Pape Y., “Radiation effects in concrete for nuclear power plants – Part I: Quantification of radiation exposure and radiation effects”, Nuclear Engineering and Design, vol. 282, (2015), 126–143. https://doi.org/10.1016/J.NUCENGDES.2014.10.003 DOI: https://doi.org/10.1016/j.nucengdes.2014.10.003
[14] Murakami K., Luu V. N., Samouh H., Ohkubo T., Kano S., Nishikawa M., Suzuki K., Maruyama I., “Relationship between ion irradiation-induced amorphization and volume expansion in quartz and feldspars for concrete aggregates”, Journal of Nuclear Materials, vol. 602, (2024), 155326. https://doi.org/10.1016/J.JNUCMAT.2024.155326 DOI: https://doi.org/10.1016/j.jnucmat.2024.155326
[15] Bary B., Sanahuja J., Le Pape Y., “Mesoscale modelling and simulation of irradiation-induced expansion in concrete”, International Journal of Mechanical Sciences, vol. 283, (2024), 109646. https://doi.org/10.1016/J.IJMECSCI.2024.109646 DOI: https://doi.org/10.1016/j.ijmecsci.2024.109646
[16] Kanagaraj B. Anand N., Andrushia A. D., Naser M. Z., “Recent developments of radiation shielding concrete in nuclear and radioactive waste storage facilities – A state of the art review”, Construction and Building Materials, vol. 404, (2023), 133260. https://doi.org/10.1016/J.CONBUILDMAT.2023.133260 DOI: https://doi.org/10.1016/j.conbuildmat.2023.133260
[17] Tyagi G. Singhal A., Routroy S., Bhunia D., Lahoti M., “A review on sustainable utilization of industrial wastes in radiation shielding concrete”, Materials Today: Proceedings, vol. 32, (2020), pp. 746–751. https://doi.org/10.1016/J.MATPR.2020.03.474 DOI: https://doi.org/10.1016/j.matpr.2020.03.474
[18] Olubiyi S. A., Lee S. C., Hah C. J., “Effect of mineral admixtures in concrete on biological shield wall radiation in APR1400”, Progress in Nuclear Energy, vol. 107, (2018), 110–115. https://doi.org/10.1016/J.PNUCENE.2018.04.022 DOI: https://doi.org/10.1016/j.pnucene.2018.04.022
[19] ALMisned G., Susoy G., Baykal D. S., Tekin H. O., “A comparative investigation on mechanical, gamma-ray and neutron shielding properties of some iron and boron containing concretes samples for nuclear safety applications”, Radiation Physics and Chemistry, vol. 223, (2024), 111987. https://doi.org/10.1016/J.RADPHYSCHEM.2024.111987 DOI: https://doi.org/10.1016/j.radphyschem.2024.111987
[20] Jóźwiak-Niedźwiedzka D., Choinska Colombel M., Brachaczek A., Dąbrowski M., Ośko J., Kuć M., “Gas permeability and gamma ray shielding properties of concrete for nuclear applications”, Nuclear Engineering and Design, vol. 429, (2024), 113616. https://doi.org/10.1016/J.NUCENGDES.2024.113616 DOI: https://doi.org/10.1016/j.nucengdes.2024.113616
[21] Zhou Y., Chen X., Zhan Y., Sun F., Zhang J., He W., “Research on the shielding performance of concrete in a 60Co irradiation environment”, Nuclear Engineering and Design, vol. 413, (2023), 112575. https://doi.org/10.1016/J.NUCENGDES.2023.112575 DOI: https://doi.org/10.1016/j.nucengdes.2023.112575
[22] Anunike G. S., Tarabin M., Hisseine O. A., “Ultra-high-performance concrete for nuclear applications: A review of raw materials and mix design approaches”, Construction and Building Materials, vol. 438, (2024), 136938. https://doi.org/10.1016/J.CONBUILDMAT.2024.136938 DOI: https://doi.org/10.1016/j.conbuildmat.2024.136938
[23] Onaizi A. M. Amran M., Tang W., Betoush N., Alhassan M., Rashid R. S. M., Yasin M. F., Bayagoob K. H., Onaizi S. A., “Radiation-shielding concrete: A review of materials, performance, and the impact of radiation on concrete properties”, Journal of Building Engineering, vol. 97, (2024), 110800. https://doi.org/10.1016/J.JOBE.2024.110800 DOI: https://doi.org/10.1016/j.jobe.2024.110800
[24] Kanagaraj B., Anand M., Raj S., Lubloy E., “Advancements and environmental considerations in portland cement-based radiation shielding concrete: Materials, properties, and applications in nuclear power plants– review”, Cleaner Engineering and Technology, vol. 19, (2024), 100733. https://doi.org/10.1016/J.CLET.2024.100733 DOI: https://doi.org/10.1016/j.clet.2024.100733
[25] Abdullah M. A. H. Rashid R. S. M., Amran M., Hejazii F., Azreen N. M., Fediuk R., Voo Y. L., Vatin N. I., Idris M. I. “Recent trends in advanced radiation shielding concrete for construction of facilities: materials and properties”, Polymers, vol. 14(14), (2022), 2830 https://doi.org/10.3390/POLYM14142830 DOI: https://doi.org/10.3390/polym14142830
[26] Chang Q., Guo S., Zhang X., “Radiation shielding polymer composites: Ray-interaction mechanism, structural design, manufacture and biomedical applications”, Materials & Design, vol. 233, (2023), 112253. https://doi.org/10.1016/J.MATDES.2023.112253 DOI: https://doi.org/10.1016/j.matdes.2023.112253
[27] Song Y., Zhao J., Ostrowski K. A., Javed M. F., Ahmad A., Khan M. I., Aslam F., Kinasz R., “Prediction of compressive strength of fly-ash-based concrete using ensemble and non-ensemble supervised machine-learning approaches”, Applied Sciences 2022, vol. 12(1), (2021), 361. https://doi.org/10.3390/APP12010361 DOI: https://doi.org/10.3390/app12010361
[28] Asif U., Javed M. F., Abuhussain M., Ali M., Khan W. A., Mohamed A., “Predicting the mechanical properties of plastic concrete: An optimization method by using genetic programming and ensemble learners”, Case Studies in Construction Materials, vol. 20, (2024), e03135. https://doi.org/10.1016/J.CSCM.2024.E03135 DOI: https://doi.org/10.1016/j.cscm.2024.e03135
[29] Skiba K., Kinasz R., “Decision support in the selection of mate rial solutions for building partitions”, in Kropivnickij Conference Problems in construction and logistics industries, 2023, 39–40.
[30] Piramanayagam P., Bhalla Y., Venkanna K., Kumar V. V., Parathakkatt S., Sivaraman R., “Mathematical physics approaches to nanotechnology and material science”, Nanotechnology Perceptions, vol. 20(S16), (2024), 85–97. https://doi.org/10.62441/NANO-NTP.VI.3614 DOI: https://doi.org/10.62441/nano-ntp.vi.3614
[31] Zoia A., Wu Z., Hu A., Hao Y., Pu Y., Zhang H., Qiu R., Li J., “Optimization progress of large-scale radiation shielding Monte Carlo simulation software based on AIS variance reduction technique system: MCShield”, EPJ Nuclear Sciences & Technologies, vol. 11, (2025), 4. https://doi.org/10.1051/EPJN/2024032 DOI: https://doi.org/10.1051/epjn/2024032
[32] Rasouli F. S., Yahyaee A., Masoudi S. F., “Using ANN for thermal neutron shield designing for BNCT treatment room”, Scientific Reports, vol. 14(1), (2024), 1–12. https://doi.org/10.1038/s41598-024-65207-w DOI: https://doi.org/10.1038/s41598-024-65207-w
[33] Kaya M., Kuzu S. Y., Niksarlıoğlu S., Pekdemir M. E., Kök M., “Investigation of gamma radiation shielding in nimnga-doped multifunctional smart polymer composites using Geant4 and WinXCOM”, Journal of Advanced Research in Natural and Applied Sciences, vol. 10(4), (2024), 861–874. https://doi.org/10.28979/JARNAS.1554352 DOI: https://doi.org/10.28979/jarnas.1554352
[34] Güler Ö., Yılmaz D., Kanca M. S., Edalati K., Taşgın Y., “Radiation shielding properties of composites of TiZrNbHfTa refractory high entropy alloy reinforced with TiZrNbHfTaOx high-entropy oxide”, Journal of Alloys and Compounds, vol. 995, (2024), 174815. https://doi.org/10.1016/J.JALLCOM.2024.174815 DOI: https://doi.org/10.1016/j.jallcom.2024.174815
[35] Sales A. S. W., de Queiros Pereira V., Dias A. N. C., “Advances in nanomaterials for radiation protection in the aerospace industry: a systematic review”, Nanotechnology, vol. 36(10), (2025), 102002. https://doi.org/10.1088/1361-6528/ADA38F DOI: https://doi.org/10.1088/1361-6528/ada38f
[36] Tuteja D., Dhand R., Singh N., “Innoative materials exploring AI-enhanced applications”, Advancing Innovation in Smart Systems, Energy, Materials, and Manufacturing: Unleashing the Potential of IoT, AI, and Edge Intelligence, 2024, 160–174. https://doi.org/10.58532/NBENNURAICH9 DOI: https://doi.org/10.58532/nbennuraich9
[37] Pomaro B., “A review on radiation damage in concrete for nuclear facilities: from experiments to modeling”, Modelling and Simulation in Engineering, vol. 2016(1), (2016), 4165746. https://doi.org/10.1155/2016/4165746 DOI: https://doi.org/10.1155/2016/4165746
Article Details
Abstract views: 43
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Budownictwo i Architektura supports the open science program. The journal enables Open Access to their publications. Everyone can view, download and forward articles, provided that the terms of the license are respected.
Publishing of articles is possible after submitting a signed statement on the transfer of a license to the Journal.
Karol Skiba, Doctoral School; AGH University of Krakow;
Roman Kinasz, Department of Civil Engineering and Resource Management; AGH University of Krakow;